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Abstract— Diabetes is the seventh leading cause of death in the 

United States, but careful symptom monitoring can prevent 

adverse events. A real-time patient monitoring and feedback 

system is one of the solutions to help patients with diabetes and 

their healthcare professionals monitor health-related 

measurements and provide dynamic feedback. However, data-

driven methods to dynamically prioritize and generate tasks 

are not well investigated in the domain of remote health 

monitoring. This paper presents a wireless health project 

(WANDA) that leverages sensor technology and wireless 

communication to monitor the health status of patients with 

diabetes. The WANDA dynamic task management function 

applies data analytics in real-time to discretize continuous 

features, applying data clustering and association rule mining 

techniques to manage a sliding window size dynamically and to 

prioritize required user tasks. The developed algorithm 

minimizes the number of daily action items required by 

patients with diabetes using association rules that satisfy a 

minimum support, confidence and conditional probability 

thresholds. Each of these tasks maximizes information gain, 

thereby improving the overall level of patient adherence and 

satisfaction. Experimental results from applying EM-based 

clustering and Apriori algorithms show that the developed 

algorithm can predict further events with higher confidence 

levels and reduce the number of user tasks by up to 76.19 %. 
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telemedicine, diabetes, real-time feedback, task optimization, 

association rule mining, Apriori algorithm, expectation 
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I. INTRODUCTION 

In the United States, 8.3% of the population has diabetes 
with $174 billion spent annually on the disease. If this trend 
continues, one in three Americans is expected to have 
diabetes in their lifetime in the next forty years [1]. Diabetes 
is the seventh leading cause of death in the United States and 
accompanied by significant complications including 
blindness, hypoglycemia, renal failure, cardiovascular 
disease [2]. Various studies have shown that regulating and 
monitoring comorbid conditions including blood glucose, 

symptoms, blood pressure, weight and activities can have a 
significant impact in helping delay or prevent complications 
[3][4][5][6]. With recent advances in technology, people 
supplement or even tailor this process using sensors and data 
processing units in their home or in the hospital using remote 
health monitoring systems. Remote health monitoring 
systems can help patients with diabetes and their healthcare 
professionals monitor health-related measurements and 
provide real-time feedback.  

In remote health monitoring, patients are required to 
perform a series of daily tasks requested by their healthcare 
professionals. For instance, congestive heart failure patients 
in Chaudhry's work were required to answer 16 questions 
and measure and enter their weight using telephone keypads 
[7] and the study results showed a high missing data rate. 
Authors in [8] required patients to measure weight, blood 
pressure, and a 12-symptom questionnaire on a daily basis 
and showed frequent system non-use. Such system non-use 
in remote patient monitoring can severely degrade the patient 
participation rate and the effectiveness of designed systems. 
As missing data can lead to biased and dangerous 
conclusions, it is important to reduce the missing data rate 
and adequately handle missing data [9]. As task complexity 
is one of the main factors that highly affect user participation 
and satisfaction [10][11][12][13], reducing the number of 
required tasks should decrease missing data rate.  

For designing a human-centered system, it is critical to 
distinguish which tasks should be handled by users or 
automatically processed by computers [13]. In remote health 
monitoring, analyzing the output of user tasks in real time 
can help schedule sequences of tasks, avoid unnecessary 
tasks, and increase usability and effectiveness of the system. 
Most remote health monitoring systems utilize medical 
domain experts’ knowledge to determine and assign 
priorities and task sequences. For example, Tang applied a 
heuristic evaluation method using expert knowledge [14] and 
Dabbs utilized expert knowledge and patients’ survey 
feedback for designing a health monitoring system [15]. As 
such, most remote health monitoring systems do not apply a 
data-driven dynamic process for designing human-centered 
units and yield redundant information gains.  



This paper describes a human-centered task optimizing 
process combining data discretization methods and first-
order logic to reduce the burden in remote diabetes patient 
monitoring systems. This technique was verified using 
WANDA (Weight and Activity with Blood Pressure and 
Other Vital Signs), a remote monitoring system leveraging 
wireless sensor and communication technologies to monitor 
the health status of patients with diabetes [8].  The WANDA 
diabetes study was designed in collaboration between the 
UCLA Computer Science Department and the UCLA 
Ronald Regan Medical Center. In this study, we applied data 
clustering and association rule mining techniques to 21 of the 
subjects with Type-2 Diabetes enrolled in the intervention 
group. The experimental results show that the developed 
algorithm can reduce the required time windows by 80% 
compared to the case of using experts' knowledge to reach 
the maximum conditional probability. In addition, the 
developed algorithm reduces the number of tasks by up to 
76.19% with a minimum confidence of 0.95. 

 

II. RELATED WORKS 

A. Remote Health Monitoring for Diabetics 

According to Desai [16], an effective remote health 
monitoring system must contain the necessary elements that 
together complete the circle of disease management. Some of 
the important circle elements are the reliable measurement of 
physiological variables that can help in the early detection of 
adverse events, the efficient transmission of data to enable a 
timely response, the direct reception of data by personnel 
qualified to recommend an effective intervention, and patient 
adherence.  

Many studies [17][18][19] have shown the effectiveness 
of remote health monitoring for patients with diabetes. 
Criteria for evaluating the effectiveness of remote health 
monitoring include the accuracy of the collected data, 
automated feedback and decision support and improvements 
in clinical outcomes, inlcuding HbA1c or glycemic 
variability [20]. The studies have demonstrated the 
effectiveness of well-designed remote monitoring systems 

that collect accurate data using sensors and reduce the time 
interval between blood glucose measurements and feedback 
from healthcare professionals. Well-designed remote health 
monitoring can also help patients manage their medications 
and daily behavioral routines including their dietary intakes 
and activity patterns. 

IDEATel is one of the most successful remote health 
monitoring studies between 2000 and 2008 [18][21]. 
IDEATel utilized devices and techniques from American 
Telecare [22]. In this study, patients with diabetes monitored 
and uploaded blood pressure and blood glucose values 
through a serial port connected to a computer, and also 
participated in videoconferencing, electronic messaging, and 
accessing study web pages. The IDEATel study resulted in 
improved HbA1c, LDL-cholesterol and blood pressure levels 
over 5 years compared to the control group who did not use 
IDEATel components. 

In Stone's study [19], patients with diabetes measured 
blood glucose, blood pressure, and weight using the Viterion 
100 Telemonitor [23] connected to a telephone line. If the 
transmitted readings were in an abnormal range, nurse 
practitioners adjusted medication for blood glucose, blood 
pressure and lipid control based on American Diabetes 
Association target values. The intervention resulted  
significant reductions in HbA1C levels, which is relevant to 
long-term blood glucose level. 

Montori's study [24] also demonstrated improvement in 
HbA1c levels after 6 months use of a telemonitoring system. 
The patients in the intervention arm measured their blood 
glucose using the ACCU-CHEK Complete glucometer [25] 
and a phone-line connection. Nurses spent an average of 50 
more minutes per patient providing feedback to patients over 
the phone, demonstrating the increased collaboration 
between patients and their healthcare providers with the use 
of these technologies. As diabetes control is so closely linked 
to  variations in daily activities such as dietary intake and 
physical activity, the exchange of information regarding 
daily blood glucose readings, meal and/or activity planning  
are critical for patient education and support [26].   

 

B. Patient-orientedRemote Health Monitoring  

One way to quantify patient satisfaction with health 
monitoring systems is  to evaluate the amount of system use 
[20]. Huang [27] designed a neural network-based remote 
health monitoring system adoption model to predict the 
behavior intention toward using the system, using survey 
answers as inputs  to the model (Figure 1). 

Wu's study [28] showed that acceptance and satisfaction 
with a mobile healthcare system is related to compatibility, 
ease of use and perceived usefulness. In addition, this study 
showed that the perceived usefulness and ease of use are 
highly related to self-efficacy, which is a belief that the 
person has an ability to execute a series of required tasks. As 
self-efficacy is related to task complexity [29], it is important 
to make the task procedure simple.  
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Figure 1. Huang's research structure[27]. Note: perceived ease of use 
(PEOU), perceived usefulness and benefits (PUB), perceived disease 
threat (PDT), perceived barriers of taking action (PBTA), external cues 
to action (ECUE), internal signs(IS), attitude toward using (ATT), and 

behavioral intention to use (BI). 



Time and cost-effectiveness is also an important criterion 
related to patient satisfaction of remote health monitoring 
systems. Time-effectiveness is a factor of perceived ease of 
use, while cost-effectiveness is one of perceived usefulness 
[30]. Estimations in the degree of cost reduction with use of 
remote health monitoring studies compared to traditional 
care have varied between 1.6% to 68.3% [31]. Reduced 
hospitalization and nursing home visits are major 
contributors of the cost lowering effects in remote health 
monitoring. However, initial costs of device and service 
purchase can be an obstacle to user satisfaction despite long-
term savings [18]. Therefore, reducing the number of 
required devices and daily tasks can reduce further costs of 
equipments and physician workload. 

In our study, we focus on the perceived ease of use and 
usefulness of the system for enhancing patient satisfaction 
and adherence rates by decreasing the number of required 
sensors and tasks.  

 

III. SYSTEM ARCHITECTURE 

WANDA is a three-tier end-to-end remote monitoring 
system with extensive hardware and software components 
designed to cover the broad spectrum of the telehealth and 
remote monitoring paradigm. The overall architecture is 
summarized in Figure 2 and further details are available in 
[8]. 

The first tier of the architecture consists of a data 
collection framework, which is formed from a heterogeneous 
set of sensing devices that measure various bodily statistics 
such as blood glucose, weight, body fat, body water, blood 
pressure, heart rate, blood oxygen saturation and body 
movements. Considering the variability in age and 
preferences with regard to network options [1][32] , we offer 
several communication options. The data from these sensors 
are collected, processed, and transmitted via a phone-line, 

Ethernet or smartphone-based gateway to the cloud—the 
second tier of the WANDA architecture.  

Data are stored and indexed using a scalable database and 
can be easily accessed. Data collected from the first tier are 
sent to web servers to store data and provide monitoring 
applications such as those in Figure 3. Through the 
monitoring applications, healthcare providers can leave 
comments and annotation of collected data, as well as export 
data. Additionally, the WANDA web application includes a 
basic statistical analysis tool to verify the test result and the 
effectiveness of the clinical trial. This function includes 
Wilcoxon rank test, log-rank test, t-test, etc. which are 
widely used in many randomized trials [33]. 

The last tier of the WANDA architecture is a backend 
analytics engine capable of continuously generating 
statistical models and predicting outcomes using various 
machine learning and data mining algorithms. Once data are 
transmitted to the server, basic preprocessing and 
dimensionality reduction algorithms are executed prior to 
data analytics. Data cleaning and signal transformations are 
the main goals of this pre-processing step. The analytics 
process normally consists of two stages. First, the data are 
downloaded and analyzed offline based on various 
hypotheses. Once a strong model has been generated and 
validated, it can then be uploaded to the server to perform 
real-time analytics. One of the challenges is to optimize the 
algorithm so that it can be executed in a real-time fashion.  
Finally, when the algorithm detects a pattern that is strongly 
associated with a predictable user action, a predicted 
outcome of task optimization, missing data or an 
undesirable outcome, real-time feedback is provided  to 
remote health monitoring systems, patients and healthcare 
professionals.  
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Figure 2.System Architecture of WANDA. 

 
(a) iPhone and Android Smartphone Applications 

 

 
 (b) Web-based Application 

 
Figure 3.WANDA Monitoring Applications. 

 



 

IV. TASK OPTIMIZATION 

As one of the data analytics in the third tier, WANDA 
performs data transformation for quantizing sensory data 
readings and executes data association rule mining. Instead 
of using experts’ knowledge, WANDA finds data clusters 
and their ranges in order to discretize timestamps and blood 
glucose readings. Association rule analysis is a method to 
find interesting relations among attributes in large data sets. 
Rules are derived using previously collected data to help 
predict the current or future behaviors of a patient.   

First order logic from association rule mining can be used 
for patient task optimization, emergency event prediction and 
system optimization, as shown in Figure 4. Association rule 
mining and its feedback are used for reducing the number of 
tasks required by patients while increasing information gain. 
One of the advantages of the task optimization step is 
improving patients’ adherence to remote health monitoring 
and enhancing missing data imputation results by obtaining 
more data or finding underlying data relationships. After task 
optimization for improving patient participation, missing 
data imputation techniques can be applied to WANDA in 
order to predict missing values and provide alarms to 
healthcare professionals when the predicted missing values 
are out of acceptable range [35]. In addition, association 
rules related to emergency events can be used to generate 
early adaptive alarms and guidance  to prevent emergency 
events. For example, analyzing past vital signal data can help 
find trends of readings, which cause emergent events such as 
hospitalization. Also, the association rule mining finds users' 
tendency of remote health monitoring system usage and 
provides dynamic feedback to the system for optimizing 
battery life. 

 

A. Data Discretization 

Sensor readings and corresponding timestamps in 
remote health monitoring are continuous signals. To reduce 
the dimensionality and complexity of processing continuous 
numeric and timestamp data, it is necessary to discretize the 
data. Under supervised settings, patients might have regular 
schedules of meal and blood glucose measurement such as 
6:30 am, 11:30 am and 5:00 pm [38]. However, in 
unsupervised environments such as remote health 

monitoring, patients can have more flexible schedules, so it 
is hard to categorize time frames as morning, afternoon and 
evening. In addition, as patients with diabetes generally 
have higher blood sugar, their readings can be more biased 
and may not follow normal distribution or standards [3]. 
Moreover, results of Jarrett's study show that blood glucose 
levels in the afternoon or evening are generally higher than 
in the morning [39]. Since blood glucose levels vary 
depending on the time of day, discretizing blood glucose 
data equivalently for different time intervals can result in 
biased results.  

Therefore, it is necessary to categorize and quantize data 

using data-driven methods instead of experts’ knowledge or 

human intuition. In this paper, we assume that the collected 

sensor data follows a mixture of Gaussian distribution and 

apply an expectation maximization (EM) algorithm to 

cluster data into the pre-defined numbers of bins. The EM 

algorithm [40][41] is an iterative method to optimize the 

estimation of an unknown parameter �, given measured 

variables U and unmeasured variables J. The objective of 

the EM algorithm is the maximization of the posterior 

probability (1) of the parameter � given U and J. 
 

�* = ������Ɵ ∑ P(Ɵ, J|U)�  (1) 

 
The EM algorithm consists of two steps: The 

expectation step (E step) and the maximization step (M 
step). The E step finds a local lower-bound to the posterior 
distribution while the M step optimizes the bound obtained 
from the E step using iteration. In the E step, the algorithm 
calculates the expected value of the log likelihood function 
under the current estimate of the parameters Ɵt of the 
conditional distribution J given U. This step finds the best 
lower bound, B(Ɵ|Ɵt)  

 

B(Ɵ|Ɵt) = ∑ ��(�) log
�(�,�,Ɵ

�
)

��(�)�  
(2) 

 

while��(�)=
�(�,�,Ɵ�)

∑ �(�,�,Ɵ�)�
 = P(J|U,Ɵ�).The M step iterates and 

chooses Ɵt+1   by maximizing the bound, B(Ɵ|Ɵt) from the E 
step 

 
Ɵ

t+1 = ������ƟB(Ɵ|Ɵt)  
= ������Ɵ[��(Ɵ) + log �(Ɵ)] 

(3) 

 
while ��(Ɵ) is the expected complete log-likelihood, 
log P(U, J|Ɵ)	 and P(Ɵ) is the prior on the parameters Ɵ. 

The developed algorithm quantizes timestamps of sensor 
readings and sensor readings in each time range are 
discretized. Based on mean and standard deviation values of 
each Gaussian curve from the EM algorithm, the developed 
algorithm finds intersection points and these points are used 
for discretizing time and blood glucose ranges. 

 

Figure 4. Association Rule Learning Workflow in WANDA. 

 



B. Data Association Rule Mining 

Association rule analysis is a method to find interesting 
and strong association among attributes in large data sets.  
One example is affinity analysis to find the purchase 
behavior of different groups of consumers and their market 
baskets [42]. The results of affinity analysis can be used for 
arranging items in the store, planning store promotions, etc.  

 In remote health monitoring for patients with chronic 
diseases, patients' health status changes dynamically, but 
health-related readings are correlated [43][44]. Therefore, 
finding trends and associations of patients’ data can help to 
reduce the number of tasks, decide the order of tasks, and 
even enable to provide early adaptive alarms to prevent 
emergency situations. 

In  WANDA, rules are derived using previously collected 
data to help predict the status and behavior of a patient. The 
WANDA implementation uses data collected within a 
dynamic sliding window w determined by the algorithm in 
Figure 5 before the current or future measurement. 
Association rule mining and its feedback are used for 
reducing the number of tasks required by patients while 
increasing information gain. In the data preprocessing step, 
the developed algorithm performs data cleaning and 
discretization for removing erroneous data and discretizing 
timestamp and indexing data (see section above). The system 
also indexes blood glucose and questionnaire response data 
as multiple measurements and system non-use. Additionally, 
information on whether a caregiver contacted the patient for 
each day is used.  

The developed algorithm applies the Apriori algorithm 
[45] to derive first order logic rules, after preprocessing the 
data (Figure 5). The discretized and categorized data are used 
in the algorithm as inputs and rules are derived by looking 
back a variable number of days (time window). The time 
window is increased by one day for each iteration. The 
algorithm calculates the support and confidence of each 
implication and chooses implications qualifying threshold 
limits. In each subsequent pass, the large item sets found in 
the previous step are used to generate the candidate sets (the 
largest item sets). The results of each step are large item sets 
of qualifying minimum support and confidence in the given 
time window. 

Let I = {i1, i2,…im} be a superset of all possible task 
outputs. Let D be a set of events such that D⊂I. An 
association rule is an implication of A⇒B where A⊂I, B⊂I 
and A∩B = ∅. Confidence c means that c% of events in D 
contain A and B. Support s indicates s% of events in D 
contain A or B. Conditional probability p indicates p% of 
events in D contain B when A happens. The developed 
algorithm requires generating association rules that have 

support, confidence and conditional probability greater than 
the user-defined thresholds, minimum support (smin), 
confidence (cmin) and conditional probability (pmin) . 

When Apriori returns first order logic rules, A⇒B, the 
algorithm calculates the contrapositive rules, ¬B⇒¬A. If the 
timestamp of the consequent in either implication (original 
rule or contrapositive rule) is larger than the timestamp of the 
antecedent and the implication is not a subset of any existing 
rules, the generated rule is added to the rule set. However, if 
a subset of the existing rule has a higher conditional 
probability, the algorithm updates the existing rule with a 
new conditional probability value. The process stops when 
there is no new rule and the algorithm returns the final rule 
set (Figure 5).  

The generated rules in Rule are prioritized based on the  
conditional probability values and applied to the remote 
health monitoring system. Using the implication rules, the 
system can reduce user tasks by monitoring necessary tasks 
and predicting unperformed tasks. As the Apriori algorithm 
has excellent scale-up properties, the developed algorithm 
can be applied to the system for dynamically arranging daily 
patient tasks depending on the size of dataset [45]. 

 

V. RESULT 

A. Subjects and Data Sets 

This study was approved by the UCLA Institutional 

Review Board (IRB) and patients were randomized to either 

MAIN LOOP: 
Rule:= ø; 
w := 1; 
while Aw*≠ ø do 
 Aw :=Result from APRIORI with minimum conditional 

probability pmin; 
 Aw’ := Contrapositive of Aw; 

Aw* := Subsets of Aw U Aw’ which antecedents’ maximum 
timestamp is smaller than consequents’ minimum timestamp 
and not in Rule with smaller conditional probability; 

 Rule :=Rule U Aw*; 
 w:= w+1; 

end 
 
APRIORI: 
Result:=ø; 
k:=1; 
while Ck≠ ø do 

create a counter for each itemset in Ck;  
foreach events in database do 

Increase the counter of itemsets in Ck which appears in 
the events;  

Lk := All candidates in Ck with support smin 

Resuit:=Result U Lk; 
Ck+1:=k+l-itemsets which have all subsets of  Lk.  
k:=k+l;  

end 
 
Figure 5.Association Rule Learning Algorithm in WANDA. 

 
 

 

TABLE I.  PATIENT POPULATION INFORMATION 

Group Total Male Female Avg. Age 

Intervention 21 18 3 48.13 

Control 24 16 8 65.25 

 



intervention or control groups starting June 1st, 2011. 

Participants eligible for recruitment were adults with Type 2 

Diabetes, HbA1c>7.5 who were recently hospitalized. 

Patients with active malignancy or those unable to provide 

informed consent were excluded. 

In this analysis, we used data from 21 study participants 

assigned to the intervention arm (see Table I) and the 

average participation duration is 52.23 days. Patients in the 

intervention arm are required to measure their blood sugar 

up to three times a day (morning, afternoon and evening) 

and answer four questions per day (see Table II). The 

defined acceptable ranges for blood glucose are between 80 

and 200 mg/dL [3].  Acceptable ranges of questionnaire 

values are denoted in Table II.  

The timestamps are discretized into three different 
categories and blood glucose data in each time category 
were discretized into three levels. Collected data are also 
indexed if there are any missing data or multiple 
measurements. Existence of call logs between a patient and 
caregivers are labeled. The pre-defined threshold for smin and 
cmin in APRIORI are both 0.95 and pmin is 0.85 in MAIN 

LOOP in Figure 5. The total number of instances used in this 
study is 1117 and each data has 54 attributes per day 
including patients’ profile. 
 

B. Data Discretization Methods and Result 

To find the best discretization method, we applied 
different discretization approaches using: 1) the experts' 
knowledge utilized in Hanefeld and Malherbe's studies 

([3][38]),  on blood glucose  and timestamp accordingly; 2) 
the EM algorithm ; and 3) the combination of experts' 
knowledge and the EM algorithm. 

For experts' knowledge-based discretzation (EKTBD), 
timestamps  are categorized into three different time periods 
(Ti)  and each timestamp period isT1 : 7:30:00-12:00:00, T2:  
12:00:00-16:30:00 and T3: 16:30:00-21:00:00, and blood 
glucose readings are categorized into three different level 
(Bi) and each blood glucose level is B1: <80 mg/dl, B2: 80-
200 mg/dl  and B3:> 200 mg/dl.  

For discretizing timestamps only (EMTD), we applied the 
EM algorithm on collected timestamps of blood glucose 
measurements and applied experts' knowledge on blood 
glucose readings. Timestamps are discretized as T1: 0:00:00 - 
8:29:59, T2: 8:29:59-15:09:45 and T3: 15:09:45- 23:59:59 
and blood glucose readings are discretized as B1: < 80 mg/dl, 
B2: 80-200 mg/dl  andB3: > 200 mg/dl. 

For discretizing blood glucose only (EMBD), we utilize 
the EM algorithm on collected blood glucose readings and 
applied experts' knowledge on timestamps.  Each timestamp 
period is T1 : 7:30:00-12:00:00, T2:  12:00:00-16:30:00 and 
T3: 16:30:00-21:00:00, and blood glucose readings are 
categorized as B1: < 170.8 mg/dl, B2: 170.8-274.0 mg/dl  and 
B3: > 274.0 mg/dl (Figure 6). 

For quantizing both timestamps and blood glucose 
readings (EMTBD), we utilized EM algorithm on collected 
timestamps of blood glucose measurements to discretize data 
into three bins and readings collected in each time period is 
also discretized into three levels. In other words, each time 
interval has different standards of categorizing blood glucose 
data in three different levels. Each discretized timestamp 
period  and mean and standard deviation values of its three 
different blood glucose levels are in Table III. We assume 
that the readings are a mixture of Gaussian distribution and 
find intersection of Gaussian curves. The obtained B1, B2, B3 

ranges of T1 (B11, B12, B13) are  <166 ,  166-372,  and  
>372and B21, B22, B23, B31, B32, B33are < 169 ,  169-265, > 
265, < 185 ,  185-318, > 318 mg/dl accordingly. 

The experimental results show that the maximum sliding 
window size to make the conditional probabilities of ten best 
Apriori first order logic rules 1.00 is 4 days in EMTBD, 
while other methods require 5 days (Figure 7). Therefore, the 
developed algorithm can reduce the required time windows 
to 4 days to reach the maximum conditional probability, 
while utilizing experts' knowledge requires 5 days. 
Furthermore, discretizing timestamp and quantizing blood 
glucose data of each time frame using the EM algorithm 
yields less computational power and maximizes information 

TABLE III. TIMESTAMP AND BLOOD GLUCOSE RANGES IN EMTBD 

Blood Glucose (mg/dl) 

  Level 1 Level 2 Level 3 

Time Mean STD Mean STD Mean STD 

00:00:00-
08:29:59 (T1) 124.9 28.90 213.2 53.35 426.4 16.24 

08:30:00-
15:09:45 (T2) 133.6 27.52 187.1 60.65 273.8 138.6 

15:09:46-
23:59:59 (T3) 139.9 38.69 215.5 68.41 438.3 161.1 

 

TABLE II.  WANDA MONITORED ITEMS AND ACCEPTABLE RANGES 

Items Values 

Blood Glucose  80 - 200 mg/dl 

Q1. Have you had any blood sugar readings < 80 or 
> 200? 

No 

Q2. Have you missed doses of your medication? No 

Q3. Today, is your health, good, fair or poor? Good, Fair 

Q4. Compared to yesterday, are you feeling better, 
about same, or worse? 

Better,  
About same 

 

 
Figure 6.Gaussian Mixture of Blood Glucose in EMBD 

 



gain in a shorter period of time compared to using experts' 
knowledge-based  methods 

 

C. Data AsoociationRule Mining Result 

The proposed algorithm had optimal results with a look- 
back window of 5 days.  The minimum confidence peaks at 

1.00 at  2 to 5 days. Compared to our earlier study [37] 
which only utilizes experts' knowledge, the combination of 
EM algorithm-based discretization and Apriori algorithm 
shows improvement in 1.292% of minimum confidence. 

Figure 8 shows the number of new rules added or updated 
with increasing window size.  A total of 7 rules were added 
with a window size of one day and a total of 19 rules in 
Table IV were updated with a window size of 5 days.  No 
rules were added or updated with a look-back window of 
more than 5 days. Compared with earlier study results in 
[37], a larger amount of data (546 data in [37] and 1117 data 
in this study after data cleaning) and the EM algorithm-
based discretization yields more rules with larger size of 
sliding window from the Apriori algorithm.  

The total number of patient tasks was reduced by up to 
76.19% with negligible information loss. The reduction in 
patient tasks allows the system to generate additional tasks 
for patients to increase information gain. For example, as 
shown in Table IV, it was found that responses to Q3 and 
Q4 can be inferred from each other. This allows the system 
to generate a new unrelated question to replace Q3 to learn 
additional information about this patient (with no added 
work by the patient). 

Compared with the algorithm in [46], the developed 

Figure 7. Required Window Size (Days) to Reach Maximum 
Conditional Probability, 1. 
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TABLE IV  RESULTS OF DATA ASSOCIATION RULE MINING 

IF THEN 

Conditional 

Probability 

Answer of Q3 on Day 1 is 
Good/Fair AND Answer of 
Q4 on Day 2 is 
Better/About Same 

Answer of Q3 on Day 2 is 
Good/Fair 

0.9970 

Answer of Q3 on Day 1 is 
Good/Fair AND Answer of 
Q4 on Day 2 is 
Better/About Same AND 
Answer of Q4 on Day 3 is 
Good/Fair 

Answer of Q3 on Day 3 is 
Good/Fair 

0.9990 

Answer of Q3 on Day 1 is 
Poor 

Answer of Q3 on Day 2 is Poor 

0.8889 

Answer of Q3 on Day 3 is Poor 
Answer of Q4 on Day 1 is 
Worse 
Answer of Q4 on Day 2 is 
Worse 

Blood glucose is above 372 
before 8:30 am on Day 1 

Blood glucose is above 372 
before 8:30 am on Day 2 
Blood glucose is above 372 
before 8:30 am on Day 3 

Answer of Q4 on Day 1 is 
Better/About Same 

Answer of Q3 on Day 1 is 
Good/Fair 

0.9961 

Answer of Q4 on Day 1 is 
Better/About same AND  
Answer of Q4 on Day 2 is 
Better/About same 

Answer of Q3 on Day 2 is 
Good/Fair 

0.9980 

Blood glucose is less than 
372 before 8:30 am on Day 
1 AND   Answer of Q4 on 
Day 2 is Better/About Same 
AND Answer of Q4 on Day 
3 is Better/About Same 

Answer of Q3 on Day 3 is 
Good/Fair 

0.9990 

Blood glucose is not below 
166   AND  not above 372 
before 8:30 am on Day 1 

No Multiple measurement before 
8:30 am on Day 1 

0.9964 

 Multiple measurement 
before 8:30 am on Day 1 

Blood glucose is above 372 
before 8:30 am on Day 1 

0.9333 

Blood glucose is below 166 
before 8:30 am on Day 1 

Blood glucose is above 265 
between 8:29:59am and 
15:09:45 pm on Day 1 

Multiple measurement between 
8:29:59 am and 15:09:45 pm on 
Day 1 

Blood glucose is above 318 after 
15:09:45 on Day 1 

Multiple measurement after 
15:09:45 pm on Day 1 

 

 

Figure 8.Number of First Order Logics Added or Updated per Iteration. 

7

12

14

17

19 19 19

7

5

2
3

2

0 00

5

10

15

20

1 2 3 4 5 6 7N
u

m
b

er
 o

f 
F

ir
st

 O
rd

er
 L

o
g

ic
s

Time window size (Days)

Number of Total Rules per Iteration
Number of New Rules per Iteration



algorithm shows higher efficiency. However, since Flach's 
algorithm finds new rules that the developed algorithm 
doesn't generate, they can be used for generating helpful tips 
or reminders. 

 

VI. CONCLUSION 

The WANDA system was developed in conjunction with 

the University of California Los Angeles Computer Science 

and the UCLA Ronald Regan Medical Center. WANDA 

monitors health-related readings such as blood glucose, 

weight, blood pressure, etc. and analyzes sensor readings 

and patient profile data for improving the quality of care and 

preventing emergency situations.   

In this study, we developed WANDA, a three tier remote 

health monitoring system and focused on increasing ease of 

use in order to improve patients’ system adherence. The 

developed system applies EM-based data discretization and 

Apriori rule learning algorithms and finds association rules 

using collected sensor readings with dynamic sliding 

windows. We assumed that sensor readings from patients 

are Gaussian mixture and quantize continuous features and 

applied Apriori algorithm which efficiently finds related 

data using support values. The designed algorithm 

minimizes the number of action items and reorganizes series 

of tasks for maximizing information gain. 
In this work, we applied the developed algorithms to 

1117 data sets from 21 patients with diabetes enrolled in the 
intervention arm. Patients are required to measure their blood 
sugar up to three times a day and answer four questionnaires 
daily. The experimental results show that the developed 
algorithm can reduce the number of tasks by up to 76.19% 
with minimum support 0.95, minimum confidence 0.95, 
minimum conditional probability 0.85 and maximum time 
window size of 5 days. Compared to our earlier study [37], 
the EM-based discretization helps improve confidence levels 
of first order logics and predict further events. As the Apriori 
algorithm has excellent scale-up properties [45], the 
developed algorithm can be applied to the remote patient 
with low complexity. 

Future studies will investigate and validate the 
significance of the obtained first order logic rules in this 
paper. To make the first-order logic richer to reduce required 
patient tasks dynamically, more data association rule mining 
techniques will be exploited and maximize the conditional 
probability and confirmation. In addition, patient survey data 
will be combined to predict adherence rate in advance, based 
on their perception and experience of remote health 
monitoring technologies.   
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