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ABSTRACT

We describe a computational approach to remote sensing
image analysis that addresses many of the classic problems
associated with storage, search, and query. This process
starts by automatically annotating the fundamental objects
in the image data set that will be used as a basis for an
ontology, including both the objects (such as building, road,
water, etc.) and their spatial and temporal relationships
(is within 100 m of, is surrounded by, has changed in the
past year, etc.). Data sets that can include multiple time
slices of the same area are then processed using automated
tools that reduce the images to the objects and relation-
ships defined in an ontology based on the primitive objects,
and this representation is stored in a geospatial-temporal
semantic graph. Image searches are then defined in terms
of the ontology (e.g. find a building greater than 10® m?
that borders a body of water), and the graph is searched for
such relationships. This approach also enables the incorpo-
ration of non-image data that is related to the ontology. We
demonstrate through an initial implementation of the entire
system on large data sets (10° — 10" pixels) that this sys-
tem is robust against variations in different image collection
parameters, provides a way for analysts to query data sets
in a more natural way, and can greatly reduce the memory
footprint of the search.

Categories and Subject Descriptors

H.4.2 [Information systems applications]: Types of Sys-
tems - Decision support; 1.2.4 [Artificial Intelligence]:
Knowledge Representation Formalism and Methods - Se-
mantic networks; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval - Information
filtering, Search process
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1. INTRODUCTION

Analysis of overhead imagery is a key technology in com-
mercial and national security enterprises. Modern imag-
ing technology has both decreased the cost and increased
the availability of high-resolution images. We are in an era
where so much image data is acquired that in both commer-
cial and defense domains, we are limited by the time it takes
for human analysts to use these images to solve the problems
of interest. Because of this bottleneck, computers have been
used at many steps in the image analysis pipeline to help
alleviate many of the problems associated with large image
data sets. While this has been successful for many parts of
the analysis process, many of these solutions simply work
at adding efficiency to the classic method of having analysts
look at a series of images for a specific pattern of objects, or
perhaps looking at a series of multiple time slices of a par-
ticular scene for changes. Despite the expertise of human
analysts, this approach is quickly becoming overwhelmed in
the face of ever increasing amounts of data.

We propose here a very different approach to image analy-
sis that creates a pipeline that is focused on augmenting the
analyst’s capabilities at a higher level. In our approach, the
images are first processed and stored in terms of primitive
objects that are used as the building blocks of an ontology
that is defined by the interests of the analyst. Then, the
specific questions that interest the analyst can then be ad-
dressed directly by the processed data. The answers are
then returned to the analyst in terms of cues on the orig-
inal images that matched the queries, sorted by the qual-
ity of the match. This model supports both an interactive
sort of approach that could be furthered refined by modify-
ing the query, or a batch approach, where very large image
databases could be searched off-line and then return a list
of hits to be examined later.

The key construct that enables this approach is a graph.
More specifically, it is a geospatial-temporal semantic graph



(GTSG). The GTSG stores the information about the rele-
vant ontology via its nodes and edges. The nodes hold all of
the objects in the ontology along with a rich set of details
about the objects that can be used as part of an analyst
query. The spatial and temporal relationships between the
objects, along with the details of these relationships, are
stored in the edges. Then, an image query is not trans-
lated to a pixel-based query in order to search the images
directly, but instead is framed as a more natural ontological
query (find a building less than 1 year old that is within 50
meters of a large body of water and also is next to a parking
lot) that is searched for as a pattern within the graph.

The GTSG approach as described in this paper has a num-
ber of potential advantages over traditional search strate-
gies. These include:

e Allowing complex image searches to be described and
executed in a more natural manner.

e Enabling specific types of change to be specified in
search over multiple time slices.

e Greatly reducing the size of the data that needs to be
searched by quickly eliminating all nodes and edges
not related to the search query.

e Allowing data fusion of different types of images (such
as visible and lidar) along with non-image data, such
as GIS data and LiDAR.

e Reducing sensitivity to irrelevant image-to-image vari-
ation by decomposing the images into large objects
within the ontology.

In the rest of the paper, we’ll set the context for the work we
have done by giving a high-level overview of some previous
work by others. Then, we’ll go into some of the details of
our process and demonstrate its strengths and weaknesses
by showing some example searches.

2. BACKGROUND

The notion of context being important in image analysis
has been around for a long time. Olson mentioned it as
one of the “essential elements of information” as far back as
1960 [10]. Even before that, the notion of doing feature de-
tection via contextual analysis of components of the whole
feature was emphasized by Chisnell and Cole [3], although
that work was focused around the manual process of image
analysis. The importance of context was put in a more for-
mal structure by Biederman et al. who proposed specific
types of contextual relationships between an object and the
objects around it [1]. Since that time, much work has been
done to try to study the effectiveness of context in image
recognition [6], although most was not done in terms of an
engineering workflow on large-scale examples. An excellent
recent example of incorporating context into a workflow was
given by O’Neil-Dunne as part of a process for distinguish-
ing different types of land cover [11]. We will demonstrate
that the use of the underlying graph structure in our process
allows for a much more sophisticated use of context.

Representing change between images in a non-trivial way
is also an important problem in computer science. Radke et
al. give an excellent survey of the work that has been done,
and present a taxonomy that includes a majority of the ap-
proaches [15]. There are a few previous examples of attempt-
ing to use the notion of semantic context to represent change.

Gressin et al. describe an approach where pixels are hier-
archically classified based on their similarity to surrounding
regions, and this information is used to make decisions about
relevant change on the whole image [7]. This is related to our
approach, but is ultimately focused on classifying the pixels,
and not amenable to semantic search. Bruzzone and Bovolo
also approach the problem of change detection in high reso-
lution images through semantic means, but the encoding is
ultimately in a series of descriptors [2].

Perhaps the most commonly used competing technology
to this work is that of geospatial databases. Spatial databases
archive and support spatial queries on analyzed geospatial
image data. Spatial queries include geometric questions
regarding location or shape, or overlap/distance relation-
ships among geometric data. While standards for represen-
tation and storage in geospatial databases are improving, the
querying operations offered by many commercial or open-
source databases have a limited capability for expressing
complex geospatial relationships and geodetic feature repre-
sentation [16]. For standardizing geospatial data model rep-
resentations with respect to geospatial semantic properties,
the Open Geospatial Consortium (OGC) released CityGML,
an international standard for three-dimensional urban mod-
els [13, 9]. In contrast to the availability of several tools for
editing and visualizing this new geospatial model, software
for optimizing storage, analyzing, and mining the new data
model still needs improvement.

Semantic graphs are a powerful way to encode spatiotem-
poral data. A semantic graph is a representation comprised
of nodes and connecting edges, where both nodes and edges
have associated attributes. Edges between nodes can en-
code geospatial and temporal relationships. Several stud-
ies have investigated mapping semantic graph structures
and analyzing semantic data [5]. Many existing studies fo-
cused on either temporal or spatial semantic graphs. For
instance, Passino et al focused on spatial relation analy-
sis [14]. The OGC has proposed GeoSPARQL as a stan-
dard representation of the geospatial semantic graph model
using Resource Description Framework (RDF). We consid-
ered using GeoSPARQL as the as our data model, but for
this initial implementation, we chose not to. We did not
find GeoSPARQL suitable for automated change detection
in remote sensing data [8], and some of the subtleties as-
sociated with doing graph searches would be more difficult
with GeoSPARQL. However, we are considering using it for
future generations of the code.

While this work describes a detailed implementation and
thorough testing of the concepts that were described by a
subset of the previous authors [19], there has been some re-
cent similar work done by Yue et al [20]. That work also
demonstrates the notion of using semantics to identify fea-
tures in images through their individual components. How-
ever, there were significant assumptions made in what la-
beled data was made available and they did not focus on
the more generic notion of a general graph to describe the
relationships between the objects. There is also no notion
of time or change that work. The process we demonstrate
here is almost completely automated and therefore applica-
ble to wide-area search, and is also applicable to the problem
of change detection across multiple images from different
times.
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Figure 1: Basic computation flow.

3. REPRESENTATIONS AND ALGORITHMS

Our computation flow is based on constructing and search-
ing a monolithic geospatio-temporal semantic graph, called
a StoredGraph, and consists of two phases (see Figure 1): (i)
a graph construction phase, embodied by the AddToStored-
Graph program, and (ii) a graph search phase, embodied by
the GeoSearch program. We implemented these programs
in C++, employing an SQLite database to hold the Stored-
Graph via tables encoding the graph nodes and edges as well
as associated geospatial and semantic attributes.

The AddToStoredGraph program accepts a land cover
map and associated provenance image data; the land cover
map assigns a land cover classification such as building, dirt,
grass, road, water, etc. to each pixel of the image. The
number and types of land cover classes are flexible. The
land cover maps have associated pointers back to the raw
image and height data used to construct them. In addition
to land cover data, AddToStoredGraph is able to leverage
geospatial point data, which is widely available through pub-
lic databases, digital surface and elevation model data, and
RGB spectral data. Each execution of AddToStoredGraph
processes its input data and adds corresponding nodes, edges,
and attributes to the StoredGraph, including pointers to the
raw provenance files.

Objects that represent a contiguous land cover region from
annotated image files are added to the StoredGraph through
an optimized raster processing algorithm that keeps at least
two lines of the image in memory at a time. This technique
allows for a streaming algorithm to be used that uses much
less memory while still allowing us to ascertain adjacency
edges that correspond to contiguous regions within the im-
age. Non-image point data is straightfoward to add to the
graph. Distance edge calculations require a spatial index-
ing scheme to be done efficiently. We note that geospatial
semantic graphs can allow different geospatial reference sys-
tems and encodings across different input data and manage
geospatial encodings.

To complement the wide range of accepted data, a rich
collection of basic node and edge types are supported; ex-
amples include nodes corresponding to geospatial points or
regions and edges indicating region adjacency and distance
between points or regions. In addition over fifty different at-
tributes are currently used, reflecting geospatial, topological,
semantic, and provence-related properties. Most attribute

values are generated while the data is processed; however,
more computationally demanding attributes such as inter-
node distance for edges are computed on-demand at search
time and chached for later re-use.

A natural approach to representing a geospatial-temporal
graph is simply to construct a geospatial graph for each time
slice and add temporal edges representing the correspon-
dence between nodes across time slices. Although this is a
complete representation, it is highly redundant; many nodes
do not change from one time slice to the next and are unnec-
essarily replicated. We adopt a representation that avoids
this redundancy. New nodes are only added to the graph if
they have changed; the resulting temporal correspondence
edges then imply a change condition. This representation
is much more efficient and concentrates graph complexity
where change occurs. In addition to the significant space
savings, our representation allows us to perform change anal-
ysis by a simple topological analysis of the graph.

Since we do not store a complete geospatial semantic graph
for each time slice, we endow each node with a compact tem-
poral signature that encodes what is known about the exis-
tence of the node over time, given data observations seen so
far. This chronology attribute differentiates our representa-
tion from a pure geospatial graph; the attribute consists of
four fields: (tlastabsenh tﬁrstseen] [tlast.seeny tﬁrst.absent)- Time
tlast.absent 15 the time of the latest observation in which the
node was seen not to exist. If there are no such observa-
tions, then we set this value to —oo, since as far as we can
tell from our data, the corresponding object has been there
since the beginning of time. Time tg,st.seen 1S the time of the
earliest observation when the node was seen. Time tiast.scen
is the time of the latest observation when the node was seen.
Finally, time tgyst.absent 1S the time of the first observation
after the node was seen, in which the node was observed to
have changed or disappeared (either of which means that
this node’s time span is terminated). If we have not seen an
observation indicating the node’s disappearance or change,
then we set this value to 400, since as far as we can tell, the
node will persist forever.

A crucial primitive operation in constructing our geospatial-
temporal graphs is determining when a geospatial feature
has truly changed. There are an abundance of environmen-
tal and sensor-related factors that could cause an unchanged
feature to have small variations in shape across images; these
include sensor differences, atmospheric conditions, small ge-
olocation errors, and so on. For the results shown in Sec-
tion 4, we determine whether a newly-observed land cover
region has changed by computing the geometric difference
between it and the corresponding region(s) from the prior
time slice, and then performing a geometric shrink opera-
tion to eliminate spurious differences attributable to noise.
Once we have determined whether change has occurred, we
then modify the StoredGraph by either adding a new node
and connecting change arc (edge) in the case that the node
has changed, or simply updating the chronology fields if the
node has not changed.

The GeoSearch program accepts a GeoQuestion, which
defines a query. It is through the GeoQuestion that the an-
alyst constructs the search query via a primitive ontology
based on the regions that have been previously identified in
the land cover map and by the relationships that have been
assigned to specific pairs of nodes. While the ontology is
necessarily constrained to the types of regions, their proper-



ties, and the relationships between them, a surprisingly rich
description of search objects can be constructed in this way.
These search objects are described as a graph that can then
be searched for within the StoredGraph.

Using the GeoQuestion, the GeoSearch program constructs
a SearchGraph in memory, and then applies a selected graph
search algorithm to find matches which are rendered on
output. When constructing the SearchGraph, the program
identifies qualifying nodes by first applying SQL queries to
fetch node candidates, then checking lazy-evaluated con-
straints, invoking detailed analysis of the raw provenance
data when necessary. Edges are then constructed for Search-
Graph node pairs satisfying GeoQuestion constraints.

A Dbenefit of this approach is that the leaner SearchGraph

is decoupled from the monolithic and persistent StoredGraph.

While the StoredGraph has rich attributes and is expressed
in the semantics of the data, the SearchGraph is compact
and expressed in the semantics of the query. Thus Search-
Graph construction accomplishes two purposes: It builds a
lightweight in-memory graph containing only graph elements
relevant to the current question, and it converts the seman-
tics from the data semantics to the question semantics.

The query definition also specifies a search algorithm. A
natural search approach is via the subgraph isomorphism
problem; however, this problem is NP-complete [4, 17], al-
though there is some hope that more tractable implemen-
tations are possible on structured graphs such as geospatial
graphs. Our present work demonstrates the effectiveness
of fast and simple search approaches that are alternatives to
full-fledged subgraph isomorphism. There were two primary
search options used in the results presented in this paper:
star-graph search and connected-component search.

A star-graph search query is defined with respect to a hub
node of a given type and potentially heterogeneous spoke
nodes connected to the hub node. The star graph algo-
rithm also includes the notion of a spoke-to-spoke constraint,
which is a constraint which must be satisfied across certain
spokes. This is required to solve some problems of inter-
est, due to actual inter-spoke requirements. A connected-
component search finds connected components of nodes in
the SearchGraph, whose edges are controlled by the user-
defined query specification. For example, a user may specify
a connected-component search including edges only where
two nodes are within a specified distance threshold.

4. RESULTS

4.1 Data

We applied the GTSG approach to solve problems for
three geospatial regions including Anne Arundel County,
MD, Philadelphia, PA, and Washington, DC. Using raw op-
tical images (Figure 2), height maps measured by LiDAR
(Figure 3) and GIS data, land cover maps were generated
[12] (Figure 4). Anne Arundel County and Philladelpia data
include one time slice from 2007 and 2008 respectively, while
Washington data have two time slices from 2006 and 2011.
For Washington data, land cover maps were derived from
raw data optical images captured in 2006 and 2011, aug-
mented by LiDAR from 2008 and additional GIS data.

Depending on the region, image pixel resolutions varied
between 0.1 and 1.0 m, while the height map pixels were
0.3 - 1.0 m, and land cover pixels were 0.3 - 1.0 m. The
size of each optical image, height map and land cover map

is defined in Table 1. The land cover classification was pri-
marily done using rule sets in eCognition, and the accuracy
was verified to be approximately 95% in all of the data sets.
This level of accuracy was good enough for effective testing
of the methodology while still having enough error to test
the robustness of the algorithms. A more complete discus-
sion of the process and the accuracy analysis can be found
in [12].

Our input data also included a text file containing a list of
100 hospitals in the Washington area, including their name
and (latitude, longitude) coordinates, along with other at-
tributes [18].

4.2 Geospatial Search

Anne Arundel County, Philadelphia, and Washington data
in Table 1 were input to the graph construction program
(AddToStoredGraph), which produced a StoredGraph for
each region. The resulting graphs included a node for each
land cover region, with associated attributes such as land
cover type, bounding box, centroid, area, eccentricity, etc.
The resulting StoredGraphs contained a total of over 3.6
million nodes and 8.1 million adjacency edges. GeoSearch
added distance edges on demand.

We discuss the results below in detail in order for the
strenghts and limitations of the approach to be understood
more clearly through the examples. We also present our
results in terms of traditional language of true/false posti-
tives/negatives, but this requires further explanation. First,
we are assuming that false results are the result of the query
parameters either not matching what should have been a
positive hit, or matching a result that should not have been
a positive hit. The false results are not a result of a flaw in
the graph search algorithms. While guaranteeing the pro-
gram is bug-free is outside of the scope of this project, we did
confirm that that the results returned as positive (both false
and negative) did correspond correctly to the GeoQuestion.
Second, while it is straightforward to use public resources
to confirm our false positives, it is somewhat more difficult
to confirm the false negatives. Still, we spent considerable
time and effort investigating both the images and relevant
on-line resources to understand where there might be false
negatives. We also note that the emphasis in this paper
is to demonstrate the technique on the examples, and that
none of the authors are subject matter experts regarding the
facilities that were given in the examples.

4.2.1 Power Plant Search

We defined a star-graph GeoQuestion query to search for
fossil-fueled electricity generation plants as described in Fig-
ure 5. Our search definition invoked raw data provenance
analysis to fetch height data, and also RGB spectral data
from the imagery to differentiate black coal piles from ordi-
nary bare earth.

Out of 3.6 million primitive features, a total of 15 matches
were returned from this search. The power plant search
found two in Anne Arundel County, eight in Philadelphia
and five in Washington. Six of these were actual power
plants including the two in Anne Arundel County shown
in Figure 6. Table 2 shows true positives, false negatives,
and false positives of each region. All of the nine false pos-
itives and one false negative can be explained by difficulty
differentiating transformer pads from parking lots with tall
lighting structures; an improvement in the query regarding



(a) Anne Arundel County, MD (b) Philadelphia, PA (¢) Washington, DC
Figure 2: Raw optical imageries.

(a) Anne Arundel County, MD (b) Philadelphia, PA (c) Washington, DC
Figure 3: Height maps (Lightness corresponds to height).

(a) Anne Arundel County, MD (b) Philadelphia, PA (¢) Washington, DC
Figure 4: Land cover maps generated by using raw optical images (Figure 2), height maps (Figure 3) and GIS data.
rown: Dirt, Light green: Grass/shrub, Dark green: Trees, Blue: Water, Red: Buildings, Black: Roads, Grey: Other pave
B Dirt, Ligh G hrub, Dark Tr Blue: W Red: Buildi Black: Roads, G Oth d



Table 1: Data set image sizes.

Anne Arundel County,

Philadelphia, PA

Washington, DC

MD
2007 2008 2006 2011
. 2.485 x 10° pixels 1.015 x 10! pixels 1.462 x 10° pixels 4.340 x 10® pixels
Optical Image

7,331 MB 7,669 MB 3,420 MB 721 MB

Height Map 1.470 x 10° pixels 8.980 x 10° pixels - 4.330 x 10® pixels
5,745 MB 2,084 MB - 141 MB

6.661 x 10° pixels 8.982 x 10° pixels 1.271 x 10° pixels 1.462 x 10° pixels
Land Cover Map 123 MB 8,775 MB 32 MB 35 MB

1,204,087 nodes

1,140,821 nodes

705,942 nodes 1,326,212 nodes

Optional
Building
90 m’< Area < 3,000 m”
Circular
m

Coal Fuel <100
Pile
- <300 m <250 m ~
Optional Required
Dirt Paved
30,000 m* < Area Heat 5000 m’< Area
Red 75% < 0.95 Building Eccentricity <3.5
Green 75% <095 12 m < Heightyx < 35m
Blue75% < 0.95

<300 m Required <300 m

Building

2,800 m*< Area < 60,000 m?
Body Non-circular
of Water 50 m < Heightpax
1.75 < Heightya/Heightmedian
Optional Optional
Water Water

20,000 m? < Area 1,500 m*< Area < 19,500 m*

Eccentricity <6.0

Figure 5: Power plant search definition.

\ %
Transformer i,

\ Pond

Figure 6: Power plant search outputs
in Anne Arundel County, MD.

Table 2: Power plant search output evaluation.

Anne Arundel, Philadelphia, Washington,

MD PA DC
TP 2 2 2
FP 0 6 3
FN 0 2 0

<200m <200m

Fluid Storage Processing

Tower

Required Required
Building Building
150 m*< Area < 3,000 m> 20 m’< Area < 5,000 m”

Circular Circular
15m <Heightyx

Figure 7: Refinery search definition.

this one issue would likely reduce the number of false posi-
tives to zero. The second false negative was missed because
its height values of the heat building stacks were under the
threshold limit.

While running this search, a total of 2,683 SearchGraph
nodes were generated. This vast reduction from the 3.6
million primitive features is attributable to the constraints
defining candidate nodes. Yet the number of SearchGraph
nodes is still much larger than the number of returned matches;
this narrowing is attributable to the graph topology indi-
cating suitable adjacency between plant components. For
example, there are 113 candidate heat building nodes, yet
only 15 returned matches.

4.2.2 Refinery Search

We defined a connected component GeoQuestion query
to search for groups of fluid storage tanks and processing
tower nodes in Figure 7. Because we were interested in large
refineries, we required matches to include a minimum of 10
tanks and 10 towers.

This search successfully found the two largest refinery
complexes in Philadelphia, and returned nothing for Anne
Arundel and Washington, where there are no large refiner-



Figure 8: Detailed view of refinery search outputs.

ies. The two refinery complexes in Philadelphia are about
400 meters apart, managed by the same company. Table 3
shows true positives, false negatives, and false positives of
each region. The refinery search successfully found all re-
fineries in three regions without any false positives or false
negatives. Figure 8 shows a detailed view of the returned
refinery complexes.

Across all three regions, the refinery SearchGraph con-
tains 22,282 total nodes, while the refinery search returned
only two refineries comprised of 129 nodes total. This pro-
vides a striking demonstration of the power of exploiting
graph topology to constrain geospatial search.

4.3 Geospatial-Temporal Search

We applied GTSGs to analyze changes in the Washing-
ton, DC area. We constructed a StoredGraph by running
our graph construction program on first the 2006 land cover
map, then the hospital text file, and then the 2011 land cover
map. The resulting StoredGraph thus represented geospa-
tial objects across Washington, including change relation-
ships from 2006 to 2011, as well as relationships to known
hospital locations. This StoredGraph has over 1.3 million

Table 3: Refinery search output evaluation.

Anne Arundel, Philadelphia, Washington,

MD PA DC
TP 0 2 0
FP 0 0 0
FN 0 0 0

nodes, over 3 million adjacency edges, and over 2 million
change edges. Distance edges are added to the graph on
demand at search time.

We can use the StoredGraph to perform direct change
diagnosis. Because change relationships are built into the
StoredGraph, a number of change analysis problems can
be solved by applying graph topology constraints at search
time, during the phase when the SearchGraph is constructed.
For example, a node corresponding to a completely new
building would appear at the head of one or more change
arcs, if the nodes at the tail of the change arcs are all non-
building land cover types. This implies that the building
now occupies space where no building existed before. Sim-
ilarly, a merged building is indicated when a building node
is at the head of multiple change arcs, every change arc has
a building node at its tail, Arearemovea = 0 for all arcs, and
the total area of these prior buildings equals the area of the
new building (within a tolerance). When these conditions
are met, we conclude that the entire footprint of the cur-
rent building region is accounted for by previously existing
buildings, and we declare it a merged building. As a third
example, a building extension is indicated when a change
arc exists from a prior building, the added area Areaadded
is significant, the removed area Aredremoved = 0, and this is
not a merged building.

In the examples that follow, this direct change diagno-
sis is employed to identify significant construction across
the entire city of Washington. Change categories for new,
extended, and changed buildings are grouped into a sin-
gle “Constructed” category. Merged buildings are excluded,
thus removing numerous examples of spurious insignificant
change.

4.3.1 Construction Search Near Hospitals

We applied GTSGs to investigate the question “Which
hospitals are near the greatest construction activity?” This
might support a study investigating whether construction-
generated particulates were related to hospital contamina-
tion or lung infections.

We defined a star graph query with a hospital as the hub,
constructed nodes as the only spoke type, and a maximum
distance for SearchGraph edge creation of 1 km. The search
query is defined in Figure 9. Hospital nodes are from a
text file and building nodes are generated from the input
land cover map. Constructed nodes are inferred from graph
change arc topology representing change across time slices.
Out of over 1.3 million nodes, a total of 73 matches were re-
turned from this search. Figure 10 shows the match with the
largest area sum; this is the match with the greatest nearby
construction, measured in terms of constructed building plan
area. The nearby construction is illustrated by the purple re-
gions, and has a total building plan area of over 297, 000m?.
We note that while this serves as a good example of the capa-
bilities of the program, most of the change represented in the
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Required Required

100 m? < Area
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Figure 9: Construction near hospitals search definition.

example was probably not real change, but a manifestation
of an error in the building image processing identification
program that did not correctly identify the building atria in
one of the time slices.

The SearchGraph contains 2,949 total nodes and 4,151
edges between hospital nodes and construction nodes, while
the StoredGraph includes 1.3 million nodes. The search re-
turned 73 outputs comprised of 4,224 nodes and 4,151 edges
total. The reason we have more nodes in the search out-
put is because a construction node can be close to multiple
hospital nodes.

4.3.2 New Building Complexes

We also used our program to identify complexes of new
similar buildings throughout the city, using the connected
component graph search definition in Figure 11. We de-
fined a graph query where constructed nodes were the only
node type in the SearchGraph, and SearchGraph edges were
constructed between all constructed node pairs with simi-
lar area (Areai/Areas € [0.66,1.5]) and similar eccentricity
(Eccentricity, | Eccentricitys € [0.66,1.5]). We constrained
the search to require more than 5 buildings within the dis-
tance limit for each connected component.

The search returned 27 matches. Based on the input land
cover, 26 matches correctly identified new building com-
plexes, while one match was a complex of unrelated build-
ings, indicating a limitation in the building similarity con-
straints. Figures 12a and Figure 12b show two examples.
In Figure 12a, a neighborhood of new houses appears over
what was bare earth in 2006. In Figure 12b, a new complex
of large houses appears in the place of a complex of smaller
houses that were torn down.

The SearchGraph contained 2,876 total nodes and the
search returned outputs comprised of 436 nodes.

S. DISCUSSION

The execution time using Intel Core and Xeon systems
running at 2.50 - 3.40 GHz with 8.0 - 32.0 GB main mem-
ory for the searches in Section 4 is listed in Table 4. The
results given are for a single-threaded implementation. It
is important to note that the current work has primarily
focused on a demonstration of the utility of the method,
and we put only a small amount of effort into optimizing
the calculations. We would anticipate a formal engineering
implementation of the method would be much faster.

Figure 10: Construction near hospitals search output
with the largest area sum.

While we have not yet performed a rigorous performance
evaluation, we can make several subjective remarks about
the robustness of the approach. First, because the method
utilizes graph topology and object properties rather than
more rigid shape-based templates, the recognition system is
tolerant of wide variation in the item searched. For example,
consider the two refineries found by the method, shown in
Figure 8. These two refineries have widely varying compo-
nent shapes, layout, and even component content. Yet our
algorithm had no difficulty finding these very different sites,
because it focused on the generic properties of the primi-
tive objects, which, when taken as an ensemble, produced a
strong indication of a refinery.

The refinery example also demonstrated a different sort
of robustness that our process enables, that is a variation

Non-
Building,y

Buildingzon

Areaemoved > 0.1 X Areayg;

Figure 11: New building complexes search definition.



Table 4: Execution time of the spatial and spatio-temporal searches (Unit: Hours).

Construction near New Building

Power Plant Refinery Hospitals Complex
Anne Arundel 8.7 4.6 - -
Philadelphia 2.9 2.7 - -
Washington 3.4 1.6 1.9 1.7

(a) A complex of new buildings.
Left: 2006 (DigitalGlobe), Right: 2011.

(b) A complex of new buildings,
replacing a previous complex
Left: 2006 (DigitalGlobe), Right: 2011.

Figure 12: New building complexes search output.

in match topology. It has been pointed out that many of
our search examples use somewhat arbitrary numbers for
what determines a match, such as the minimum of 10 tanks
and towers that define our refinery. This is certainly true,
but the flexibility in our match algorithms enables searches
where the target is not necessarily precisely defined (such
as a refinery) or the person performing the analysis doesn’t
know the precise specifications of the target. A wider pa-
rameter space will return more matches, including poten-
tially more false positives, but it enables an initial search
that can potentially be further refined after the initial re-
sults are examined.

The method also exhibits robustness to some preprocess-
ing errors. For example, in Figure 6 the large power plant
was affected by two errors in preprocessing. First, one coal
pile was missed because preprocessing erroneously assigned
this area a land cover category of grass. Second, the tall
stacks of the heat building were omitted from the building
footprint for some reason. Nonetheless, the power plant was
successfully found, because other attributes and elements

were sufficient to provide strong clues. So while the method
can still be foiled by some preprocessing errors, it does not
require perfect preprocessing to achieve high performance.

This also is an example of another aspect of our approach
that promotes robustness. Our goal is to automatically draw
a user’s attention to an area of potential interest, not to
recognize and explain all components of a facility. Thus
the presence of refinery components in Figure 8 that remain
unmarked is not a problem; after pointing out this facility
to the user, they can apply their human expertise to study
the site details to determine if it is in fact a refinery, and to
thoroughly analyze and label all of the site components.

In this sense one can view our system as analogous to the
familiar web search engine; based on simple keyword crite-
ria, the search engine returns a set of plausible candidates,
which we then quickly review and choose a subset to read in
detail. For this reason we are not overly concerned about the
small number of false positives and false negatives returned
in the power plant search; false positives can be very quickly
reviewed and discarded. False negatives can be reduced by
improving search query designs and feature recognition. So
while we do intend to focus future work on improving our
ability to distinguish transformer pads from parking lots to
drive the power plant false positives to zero, we view the
current result as successful.

The use of GTSGs for detecting change also was effective,
but it is important for us to emphasize that its effectiveness
was more strongly dependent on the some of the subtleties
associated with good preprocessing than single time-slice
geospatial search. The combination of node-based analy-
sis, shrinking to eliminate noise artifacts, change magnitude
quantification, and the use of graph topology for change di-
agnosis provided an effective system for accepting signifi-
cant change and rejecting spurious change that would have
otherwise been prevalent across the data set. The change
magnitude attributes and graph topology analysis provide a
means of adjusting the criteria for significant change on a
per-query basis, or choosing to focus on one type of change,
such as returning only razed buildings or extended buildings.

It is worth noting that none of the steps in the process,
from segmentation to land cover assignment to graph con-
struction, were particularly complex in their approach. Yet
the pieces fit together into an overall system that seemed
fairly robust in identifying significant change, despite the
presence of sensor noise and other uncertainties. This is a
key feature in an approach that has the goal of being used
for large data streams that will not necessarily be collected
in a “perfect” manner.

Our graph-based model of change allows the analysis of
change seen across multiple time steps, enabling search for
stories such as the sequential initiation, progress, and com-
pletion of construction projects. However, we did not have



suitable data available spanning multiple time steps, so ex-
ploration of this capability remains for future work. When
we do so, we anticipate the need for new graph search al-
gorithms which exploit temporal sequencing constraints to
solve interesting problems, such as the analysis of multiple
related events that must occur with consistent ordering. The
graph is a natural representation for solving such problems,
and we have already begun investigation into this interesting
area.

While there are many approaches to image search, includ-
ing those that use contextual information, it is important to
point out that this approach fundamentally captures geospa-
tial and temporal changes in a simple intuitive way. Yet
while easy to understand, the sophistication of the query
is almost limitless. Using the same fundamental structure,
queries can be constructed that include complex topologi-
cal notions of spatial connectedness (or disconnectedness)
that at the same time include references to change and even
activity. This is something beyond the capability of other
approaches.
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