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Abstract: Geospatial semantic graphs provide a robust foundation for representing and analyzing remote sensor data. In
particular, they support a variety of pattern search operations that capture the spatial and temporal relationships among the
objects and events in the data. However, in the presence of large data corpora, even a carefully constructed search query may
return a large number of unintended matches. This work considers the problem of calculating a quality score for each match to
the query, given that the underlying data are uncertain. We present a preliminary evaluation of three methods for determining
both match quality scores and associated uncertainty bounds, illustrated in the context of an example based on overhead imagery
data. © 2015 Wiley Periodicals, Inc. Statistical Analysis and Data Mining: The ASA Data Science Journal 8: 340-352, 2015
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1. INTRODUCTION

The number of remote sensing applications has exploded
in the recent decades. For example, scientists monitor the
weather, the state of forest canopies, and changes in habitat
ranges for animal species. Likewise governments rely on
remote sensing technologies for activities ranging from air
and water quality monitoring to assessment of international
treaty compliance, such as nuclear nonproliferation. Each
of these applications has experienced rapid and consistent
increase in both the volume and rate of data collected from
remote Sensors.

As a side effect of improvements to data collection,
the analytical process must also change. Analysts have
traditionally relied on manual interpretation of data to
identify patterns of interest and to construct models. The
explosion in data collection makes the manual approach
intractable, so that data analysis must now begin with
computational tools. Some computational modeling tools
capable of analyzing these data exist. For example,
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Simonson et al. [1] show how to automatically co-register
multiple images using uncertainty as an indicator of result
quality. This combination of a result with a quality
assessment is a critical aspect of automated data analysis
tools.

More commonly, available tools ignore the role of
uncertainty and leave its underlying causes unaddressed.
For example, Yue et al. [2] describe a sophisticated effort
to analyze complex geospatial patterns in terms of their
constituent components, such as a high school in terms of its
buildings, grassy areas and paved areas. However, they rely
heavily on labeled data, which is typically unavailable, and
fail to consider the effects of uncertainty on classification of
the components. This is a significant loss to data analysts,
as the investigation of uncertainty can provide important
information about how well the individual components
match the larger pattern. Without it, the data analyst can
only guess at the relative quality of individual candidate
matches.

This paper reports on initial progress toward the
treatment of uncertainty in geospatial semantic graphs [3].
In this context, remote sensing images are processed in
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terms of primitive semantic objects (image regions), such
as buildings, grass, forest, and pavement. These objects
are then stored in a graph structure along with the spatial
relationships among them. An analyst can then query
(search) the resulting graph structure for patterns of interest.
Our work considers the problem of calculating a quality
score and uncertainty interval for each query match given
uncertain data.

As an example, consider an analyst tasked with scanning
wide-area overhead imagery for power plants [3]. Though
straightforward for small areas (a single metropolitan area),
the task becomes intractable when taken over larger areas
(an entire nation), as even a carefully constructed graph
search can return many candidate matches of variable
quality. Moreover, when we consider finding evidence
for construction of new power plants in subsequent data
collects, the task becomes even more difficult. In the
absence of automatically computed quality and uncertainty
information, the analyst must read and interpret the
underlying data for each candidate to create their own
relative assessments of how well each candidate matches
the search pattern. This requires substantial time and effort
and reduces the benefits of automatically processing the raw
data.

The goal of this work is therefore to provide analysts
with information about the relative quality of candidate
query matches along with their associated uncertainty
intervals. Our work includes two main contributions. The
first is a detailed examination of the issues associated
with uncertainty analysis in geospatial pattern search
applications. Although the preliminary work described here
cannot address all issues raised, the discussion provides a
roadmap for future research. The second contribution is
three distinct methods for computing match quality scores
with uncertainty intervals. Each method relies on a different
set of information and therefore provides a different set of
strengths and weaknesses. We demonstrate and evaluate the
three methods using an example geospatial search problem
that we trace throughout the paper. Finally, we conclude
with a discussion of the relative merits of each method,
along with a number of directions for future work.

Geospatial 3 Candidate ¢ Query

graph matches pattern

Geospatial semantic graph computation flow. [Color figure can be viewed in the online issue, which is available at

2. SEARCH IN DATA USING GEOSPATIAL
SEMANTIC GRAPHS

Geospatial semantic graphs enable search in remote
sensing data by representing both discrete objects with their
associated attributes and the relations among them. The
graphs support a variety of pattern search operations that
capture the spatial and temporal relationships among the
objects in the data. Although this paper focuses on imagery,
semantic graphs in general can integrate and search a
variety of data sources, including multiple imagery types,
text, and global positioning system (GPS) information.

2.1. Graph Representation, Construction, and Search

Processing begins with a collection of geo-located and
orthorectified images, such as from optical, LiDAR, radar,
or infrared sources. These are segmented into land cover
regions (buildings, trees, water, and so on) which are
then classified and labeled (see refs. [4,5] for examples).
The resulting regions form the graph nodes while edges
describe relationships among them, such as adjacency or
distance. Each node has a rich set of associated attributes
describing region properties such as label, area, centroid,
and so on. The resulting graph is written in disk to provide
a persistent basis for future searches. Figure 1 summarizes
the construction and use of the graphs.

Given the constructed graph, an analyst defines a search
query as a subgraph template. The nodes and edges of
the query graph specify both attribute constraints and
topological conditions expected from a proper match.
A pair of search algorithms then identifies matches that
satisfy both the attribute and topological constraints,
respectively. See refs. [3,6] for a more detailed discussion
of search in geospatial semantic graphs. The search
algorithms produce an unordered set of subgraph matches,
such that each match satisfies the query template.

These matches are then displayed to the analyst, cueing
them to review specific areas of interest. To reduce the
number of missed areas of interest, the analyst may specify
a query with wide parameter ranges, and designate some
components as optional. This reduces the number of false
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Fig. 2 The high school query template (a) and two candidate matches (b). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

negatives, but also increases the number of false positives
and the variability in match quality. The motivation for the
work presented here is that without some sort of quality
scoring or rank ordering on the search results, reviewing
the large numbers of matches becomes impossible. The
following section presents an example to help clarify the
preceding description.

2.2. A Simple Example: The High School Search

In the remainder of the paper, we discuss an example
search for high schools in Anne Arundel County, MD, an
area of 1523 km?. Following the procedure summarized
above, we begin with a 0.6-m resolution land cover image
generated from overhead optical imagery, LiDAR, and GIS
road network data using methods described by O’Neil-
Dunne et al. [S]. The land cover region labels are building,
trees, grass/shrub, dirt, water, road, and other paved.
From this, we constructed a graph with over 1.2 million
nodes.

Next, we defined the high school query template shown
in Figure 2(a) as a building node corresponding to the
classroom building, with an associated paved node for the
parking lot and grass node for the football field. The node
attribute constraints correspond to the land cover labels and
region area, eccentricity, perimeter, and width as shown in
the figure. The template also includes optional tennis courts,
meaning that failure to match them does not disqualify
a candidate subgraph. Topological constraints include the
links among the nodes with associated distance attributes.

Given this query, our search algorithm returned 40 high
school match candidates. Figure 2(b) shows two example

matches. We can able to notice that the layout and shape
of the buildings and parking lots are quite different; this
flexibility is a key benefit of the semantic graph approach.
For the purposes of this paper we defined a loose query, so
the returned matches included a number of false positives.

The original query reported in ref. [6] correctly found
the 12 public high schools, with only two false positives. As
a test case for quality scoring and uncertainty analysis, such
an accurate query design is undesirable for two reasons.
First, tuning the query parameters required numerous
iterations. However, quality scores and uncertainty are most
informative during initial stages of this tuning process
because they help the user to quickly identify true positives
and narrow the scope of the search. Second, many queries
may never produce such accurate results, so performance
in the context of ambiguous results is critical. For example,
a query designed to identify big-box retailers may not be
able to separate them from supermarkets, mega-churches,
and furniture warehouses.

2.3. Sources of Variation and Uncertainty in Match
Quality

Several factors may influence the level of uncertainty
in match quality evaluations. For example, the raw data
captured by the physical sensors vary due to environmental
conditions during collection, resulting in noisy data.
Likewise, integration of multimodal data sources, which
often have different sampling rates, also contributes to
noise and uncertainty (see ref. [7] for a review of issues
and methods). Together, these contribute to uncertainty
in the results produced by segmentation and classification
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algorithms. As a result, the node and edge attributes in the
semantic graph are all uncertain.

Variance in the concept described by the query pattern
also contributes to uncertainty. For example, the set of
public high schools in Anne Arundel County exhibit wide
variation in the attributes used to describe them. The
concept of high school as represented in the semantic graph
is therefore not unique; it admits objects such as parks and
sports facilities. This is partly a side effect of limitations on
graph content and on the graph query language. However, it
also stems from the variability associated with the concept
of high schools in general. As a result, the match quality
uncertainty of all candidate high schools increases.

A final source of variability results from candidate
topology. For example, while a match to the template in
Figure 2 containing a classroom building, parking lot, and
football field remains valid, another match that includes
these plus a tennis court has stronger evidence. Similarly,
the number of replications of an element also influences
match quality. A candidate high school with one football
field is a valid match, while a candidate with separate
practice and game fields may be stronger. Yet another
candidate with ten football fields might be more indicative
of a recreational complex than a high school. We do not
consider topological issues further in this paper.

Much of the discussion so far has focused on the relation-
ship between uncertainty and false positive match candi-
dates. An equally important question concerns whether the
presence of uncertainty increases false negatives. In gen-
eral, false negatives due to concept variance are always a
risk. For example, a rural high school with relatively few
students may not be recognized by the search algorithm
due to an unusually small building and a football field
that is indistinguishable from other fields. The presence of
attribute uncertainty is partially mitigated by adjusting the
search algorithm to accept any candidate whose attribute
uncertainty intervals overlap the query pattern. This may
increase the number of candidates, but avoids false nega-
tives to the extent possible.

2.4. Match Quality Scoring Desiderata

To summarize, we are given an attributed graph with
uncertain attribute values from which we must find
instances of a specified query. The goal is to compute, for
each match candidate, a quality score and associated uncer-
tainty interval that indicates the degree to which it matches
the given template. The quality scores prioritize candidate
matches for further consideration, while the uncertainty
estimates indicate the strength of evidence supporting the
score. In the remainder of this section, we discuss sev-
eral issues that the scoring and uncertainty methods must
address in the context of geospatial semantic graphs.

Domain knowledge plays a critical role in distinguish-
ing between high- and low-quality matches. Quality and
uncertainty methods should therefore incorporate whatever
information is available, including the query specifica-
tion, labeled training data, and expert knowledge. Labeled
examples and elicited knowledge in particular can pro-
vide valuable information about concept variability. As a
corollary, any required expert knowledge elicitation and
data labeling must also be practical. For example, domain
experts are notoriously bad at marginalizing over distri-
butions, and image analysts cannot be expected to label
hundreds of examples for each query specification. Eval-
uation methods that require eliciting such knowledge or
examples are therefore undesirable.

User interpretation of the quality scores and uncertainty
intervals also impacts the selection of computation methods.
Geospatial semantic graph users are intended to be analysts
with expertise in the sensor domain, as opposed to computer
scientists and statisticians. Provided scores and intervals
should therefore make intuitive sense. For example, scores
should provide a smooth and monotonic response to
changes in underlying components.

Finally, the generality of the semantic graph approach
across data sources implies that the quality scoring methods
should also generalize well. For example, we prefer to
avoid tunable modeling parameters (excluding parameters
that describe the search pattern) that require empirical
adjustment from application to application. Similarly,
assumptions made by the quality and interval estimation
methods should be theoretically justifiable to the extent
possible. The intent here is to ensure our methods have
some expectation of working in most cases, and that
we can qualify cases in which we do not expect them
to work.

3. METHODS FOR QUALITY AND
UNCERTAINTY ESTIMATION

Having identified a set of desirable solution properties,
we now describe three approaches to quality scoring and
uncertainty estimation. Each method relies on a subset
of the uncertainty and domain knowledge sources dis-
cussed in the preceding section. Elicitation-based statistical
models address rare query patterns by assuming a mod-
eling distribution and then populating its parameters via
expert knowledge, optionally augmented with labeled train-
ing examples. Bayesian graphical models address queries
for which labeled examples are readily available by model-
ing the joint probability distribution. Finally, distance-based
quality metrics determine the degree of match between
the candidate subgraph and query template. In the follow-
ing, we explore each method in greater detail, highlighting
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relationships to the uncertainty sources and solution prop-
erties outlined in the previous section.

3.1. Elicitation-Based Statistical Models

One approach in evaluating search results is to calculate
the probability that the candidate represents an instance
of the query pattern. Toward this end, we select an
appropriate distribution and then elicit its parameters from
a domain expert. The use of elicited knowledge has two
advantages. First, it supports evaluation of rare patterns that
lack training examples. Second, it drives the evaluation to
consider the analyst’s desired concept (such as high school)
as opposed to the requested query pattern (a building
adjacent to a paved area and so on). The difference is
subtle, but important in the context of concept variability.
The elicitation-based method described below could also
be adapted to incorporate uncertainty in the attribute values.
We have not done so here because the land cover maps used
to create the graph do not contain the required boundary
and label uncertainty. Adapting O’Neil-Dunne et al.’s [5]
segmentation and classification methods to produce the
required uncertainties remains a point of future work.

Our approach follows methodology proposed by Bedrick
et al. [8]. The feature vector describing the ith example
match is denoted by x; = {xq,...,x,}. Note that the
features need not be equivalent to the list of attributes
that describe the matched nodes. For example, it may
exclude some attributes, and include interaction terms. The
goal is to calculate the probability P(x;) that candidate
X; is an instance of the query pattern, and to quantify
our uncertainty about P(X;). Given that we are modeling
the probability of a binary outcome, high school or not,
we assume that the following logistic regression structure
relates our probability P(x;) to the feature vector X;:

P(x;
(L) o

where j indexes the features, oy corresponds to an intercept
term with x;0 =1, and «y,...,®, correspond to main
effects and/or interaction terms between features. Solving
Eq. (1) for P(x;) yields

exp(Q__g Xijot))

P X;) = .
i) 1 +exp(3__g xijot ;)

2

Given these equations, we next elicit values for n +
1 probabilities P(x;) corresponding to selected feature
vectors X;. We then use these elicited distributions to induce
a joint probability distribution for the «s, and use Monte
Carlo simulation to determine a probability for any new
feature vector y.

To elicit the required information, we use Latin Hyper-
cube Sampling as implemented using the maximinLHS
function in R [9,10] to select n well-separated feature
vectors, X;,I = 0...n — 1. To this, we added one feature
vector representing the mean of all features from the spec-
ified ranges, for a total of n + 1 vectors. We then create an
abstract image for each of the n + 1 feature vectors plus a
reference vector with value equal to the mean of the pre-
ferred feature ranges as specified in the search template.

For the high school example, the images included
rectangles with sides in a golden mean ratio scaled to the
desired area for classroom buildings and parking lots, which
have only area features. Similarly, all Ann Arundel County
high schools have a running track around the football field,
so we represented the football field as the interior of an
elliptical track. Although running tracks are ovals, using
ellipses simplified the calculation of the required long axes
given an area and an axis ratio (both of which are included
in the feature vector). We used a consistent scale for all
distances and areas, adjusting the layout to keep distances
consistent and to fit on a single powerpoint slide. We also
placed a rectangle consistent with a car in the parking
lot for added perspective. Finally, we asked an expert to
provide a pair of values for each layout: the median and
either a ‘surprisingly’ high or low probability that the layout
corresponds to a high school.

Next, these probability values were set to the median
and the high or low values were set to the 0.9 or 0.1
percentile, respectively, of the beta distributions for each
P(x;). Having elicited for each of the P(x;), we assume
that their beta prior distributions are independent (see
ref. [8] for extensive discussion on this point). Let X be a
(n+1) x (n+ 1) matrix that has the feature vectors from
the elicitation as its rows. We have

P(x0)
log(=55g) X0
P(x1)
log (= P(Xl)) _ X| o
X
P(xn) n
log(=5 &)
and inverting, we have
P(Xo)
log( P(xp) )
o= X! g1z P(xl) 3)
P(x,
log(*ptary)

We can now use Eq. (3) to generate random draws from
the distribution of & by making random draws from each
beta distribution describing P (x;). To do so, first generate R
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random draws from each beta distribution describing P (x;),
which is denoted by P(x;)"”,r = 1, ... R. Next, substitute
these values into Eq. (3) to get random draws ). For any
feature vector v, we can obtain random draws from the
distribution P(v) by

exp(3_Ti_o vjot;r))
L exp( 1107

PV = “4)

The above procedure yields a distribution for P(v) given
the expert elicitation, from which we can calculate a variety
of statistics to support decision making.

We can also incorporate labeled examples using Bayes’
Theorem by treating each example as an independent
Bernoulli observation. Suppose that we had two labeled
examples: y; is labeled as a high school and y; is not a high
school. Using Bayes’ Theorem, our posterior distribution
for P(xg), ..., P(x,) becomes

f(P(Xp), ..., P(x,) | data) o logit™!

P(x0)
log(+=5(xp))

P(x1)
X! 10g(1—PX(1x1))

P(x,)
log (=G

P(xp)
log(=55g)

P(x))
log(7 =)

1 — logit™ !X~

P (xn)
log(7=5¢,y)

x (1"[ Pxi)" (1~ P(xm“f“)

i=0

where y; and §; correspond to the parameters for P(x;)’s
beta distribution. Now to get samples from the posterior
distribution of e, we first draw samples, P(x;)"”, from the
above posterior distribution for P(xo), ..., P(X,) using a
Markov chain Monte Carlo algorithm. Then we use the
Monte Carlo algorithm described above with Eq. (3) to get
samples from the posterior distribution of «, and Eq. (4) to
get samples for the posterior of some new example P(y).

3.2. Graphical Models

Like the elicited model described above, graphical
models calculate the probability that a candidate subgraph,
described by a feature vector, represents an instance of the
query pattern. While the elicited approach uses a set of beta
distributions to induce a joint probability distribution for the

regression parameters «, graphical models use conditional
independence to factor the joint over the features. Unlike
the elicited approach, graphical models depend only on
labeled examples, which simplify model parameterization.
The labeling process may also be more reliable than the
elicitation described above. Nevertheless, both methods
evaluate candidates with respect to the desired concept
versus the specified query and both estimate uncertainty
due to conceptual variability.

A variety of graphical modeling approaches are available,
including directed Bayesian models and undirected Markov
models [11,12]. The primary considerations in choosing a
model are the dependencies that need to be represented
and the amount of training data available. In this work,
we assume that only tens of examples may be available
and that dependencies among variables are not well known.
Given these constraints, we elected to use the naive Bayes
model which assumes that all variables (attribute values) are
conditionally independent given the class variable (in this
case, high school or not). Naive Bayes requires relatively
few training examples, and model structure is trivially
specified.

Although the independence assumption will clearly
be violated, naive Bayes often produces useful results.
Specifically, the impact of violating the independence
assumption can be viewed as double-counting evidence.
This causes the output probabilities to skew toward the most
likely class, but does not generally change the predicted
class. In the context of assessing the relative quality of a
set of candidate matches, this suggests that naive Bayes
will still push the true positives toward the top, although
the ordering may be altered. Domingos and Pazzani [13]
provide a detailed study of the properties of naive Bayes
under independence assumption violations.

For a candidate feature vector x, naive Bayes calculates

P(o) [TjZp P(x)l0)
P [T)Zy P(xjle) + P(=c) 1)y P(xjl=c)
)

P(clx) =

where c¢ is the class value (high school or not), P(c) is
the prior probability of observing an instance of ¢, P(x;|c)
is the conditional probability of observing feature x; given
that x is an instance of ¢, and — represents logical negation.

The P(c) and P(x;|c) probabilities are estimated from
observed frequencies in the ¢ supervised training examples
Y = {yi, ..., y:}. This can be done by treating the features
as continuous variables (see ref. [14], for example) or by
discretizing them into categorical variables and simply
counting. We chose the latter, which is more appropriate
for small numbers of examples. The simplest approach is to
use the attribute constraint values from the query template
as discretization cut-offs (x; < min;, min; < x; < max;,
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Fig. 3 Distance function and associated parameters for an attribute k of node j.

max; < x;) plus a special value when the node is
missing.

We also apply Bayesian m-estimates to avoid degenerate
cases in which some conditional probability estimate equals
zero. The basic estimate, P(xj|c) = Z—i where n; is the
number of class-c examples from Y that have feature
xj, and n. is the number of examples from class c,
fails when n; =0 (no observations in the data). The m-
estimate ensures that none of the probabilities is exactly
zero by calculating P(x|c) = ”i izp where p is a prior
and m determines how heavily to weight p relative to the
observed data (equivalent sample size). We chose m =1
and p = % where k is the number of discrete values of
xj. See ref. [15] for additional details on naive Bayes and
m-estimates.

Equation 5 provides a point estimate for P(c|x). We
derive a distribution for these probabilities by applying
Monte Carlo sampling over the set of training examples.
Specifically, we repeatedly subsample the training examples
Y and compute P(c|x) over each sample. For each
sampled training set, we balance the number of positive
and negative examples such that the prior P(c) remains
approximately constant across all subsamples. As with the
elicited statistical model, the resulting distribution provides
information about the uncertainty in the probability estimate
due to the training data. As an alternative, Pronk ef al. [16]
show how to calculate the uncertainty without subsampling
the training data. However, their approach makes a second
use of the independence assumption whose effect is more
difficult to understand than above. An empirical comparison
of the two approaches remains a point of future work.

3.3. Distance-Based Quality Metrics

While the preceding methods focused on calculating the
probability that a given match represents an instance of
the query pattern, the distance-based approach calculates a
score indicating how well a candidate matches the search
template. Note the important differences. The probabilistic

methods attempt to model the underlying notion of the
target query using labeled examples and elicitation. To
some extent, they can account for aspects of the query
not encoded into the search template. Conversely, distance-
based methods measure only the similarity of the candidate
subgraph to the template. As a result, the approach can
map any subgraph to a quality score and requires no labeled
examples and minimal elicitation, but its accuracy is limited
by the accuracy of the template.

We base a subgraph’s quality score on the distance
between the candidate and the query template. To do
so, we first extend the notion of template attribute
constraints to include both preferred values, which have
zero distance, and allowable values, whose distance
increases monotonically as the attribute value moves away
from the preferred range. (The search algorithm returns all
subgraphs whose attribute values fall within the allowable
range.) We then construct a distance score by averaging
over the attribute distances for each candidate’s nodes and
edges. Finally, we convert the distance to a quality score
by inverting (low distance equals high quality) and scaling
into the range zero to one.

Figure 3 shows the general schema for the distance
functions. Given a value x;j; for attribute k of node (or
edge) j from candidate match i, the function computes
the required distance, d;j;. Attribute values outside of the
allowable range are assigned a large value d; missing, Since
the corresponding node or edge is considered absent. The
rate at which distance increases as attribute values deviate
from the preferred range is controlled by the parameters
djk allow,min and d i allow,max> Whose selection we discuss
below. These parameters provide analysts with nuanced
control in specifying the distance function’s shape.

Given the distances associated with each attribute
specified in the query, we then calculate the total distance
D; of candidate i as the average of these per-attribute
distances. However, we desire a function where quality
scores collapse if a required element is missing (such as
a high school building). To accomplish this, we define a
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per-element distance for node or edge j of match i as

nj

> djjx If all attributes are within allowable range,

dii =1 k=1
Y di If any attribute is outside allowable range,
JMISSINE or if node jis missing completely.

(6)

where n; is the number of attributes of node (edge) j,
d;j is determined by the distance function, and d; missing 18
large enough to dominate D;. Importantly, d; missing must be
carefully chosen when element j is optional in the query.
We discuss how to select this value below.

Equation 6 yields a total distance for candidate i of

> i1 dij
Z?:l nj’

where m is the number of elements (nodes and edges) in
the query template and »n; is the number of attributes for
node or edge j. We then scale the total distance into an
overall quality score between 0 and 1 with ¢; = %Di' If
all template elements are present and all attribute values
are within their preferred ranges, then D; =0 and ¢; =
1. As some parameters fall outside the preferred range,
D; increases and ¢; decreases. When an attribute of any
required element falls outside its allowable limits, then D;
becomes large and drives ¢; to near zero.

In the context of a search problem, the analyst defines
a distance function dji(x;x) for each attribute k of each
template element j. She then selects desired quality scores
qjkallow,min and ¢k allow,max» corresponding to the score
desired when the attribute value is at the allowable limit,
but the match is otherwise perfect. For example, if a match
i is perfect (zero distance) except that attribute k of element

J is at the minimum limit, then

D; =

1
qi = 4 jk,allow,min = W
Z;":l nj

We then solve for d . aliow,min given the selected g jx aliow, min-
We obtain d i allow,max Similarly.

To provide a smooth falloff in quality, the portion of
the function d (x ;i) connecting the preferred range to the
allowable limit is constrained to have zero slope at the
preferred range endpoints. The user can optionally control
the shape of the falloff by selecting intermediate control
points; we omit these details here.

The user completes the function dji(x;i) by selecting
the value d; ,issing. If element j is required, then they
choose d; jigsing to be large enough to overwhelm the
contributions of all attributes within their acceptable limits.
If the element j is optional, then the user selects a

quality, g; missing, desired if the match is missing element
J but is otherwise perfect. Given this value, we compute
dj,missing analOgOUSly to djk,allow,min~ Note that djk,allow,min
and dji allow,max Must be strictly less than d; yssing, tO
prevent a reversal of quality scores.

The above formulas compute a quality score. We
estimate the uncertainty in the score by using Monte
Carlo simulation over the uncertainty in the feature values
to derive a score distribution. For simplicity, we restrict
ourselves in this paper to the uncertainty in observed image
feature shape. We model shape variation as an uncertainty
in the location of the geometric boundary of the feature.
Ideally, the underlying land cover map would provide a
probability distribution over boundary locations. Since this
is not available in our data, we assume that the boundary
location is normally distributed with standard deviation
o,, reflecting both sensor and pre-processing effects. We
then sample boundary locations from within +30, of the
nominal boundary location, and use these to calculate
attributes such as distance, area, perimeter, axis ratio, and
width.

We apply simple approximations to generate samples,
inspired by the intuition that the true shape is within a
band of 30, defined along the perimeter of the observed
shape. For example, if a match has two nodes separated by a
minimum distance dpn, then in our Monte Carlo simulation
we sample the corresponding attribute from dp,;, £ 60,
since shape error occurs for both nodes, doubling the
variation in the internode distance. Other features such
as perimeter and areas are defined analogously. These
simple models could clearly be improved, but they have
the advantages that they are responsive to the actual object
shape and the percentage error varies appropriately with
feature size.

The uncertainty calculations described above quantify
the impact of data collection and processing errors on
the quality scores. Importantly, distance metrics can be
extended to incorporate variation in the target pattern,
as illustrated by Berger-Wolf et al. [17]. Finally, note
that the geospatial graph search algorithm described by
Brost et al. [3] allows matches with multiple copies of
both required and optional nodes. We do not address this
complication here.

4. RESULTS ON THE HIGH SCHOOL PROBLEM

We tested all three methods described in Section 3 on
the high school problem. To generate the set of match
candidates, we applied the template shown in Figure 2
to the Anne Arundel County graph, which returned 40
candidate matches. Table 1 shows a subset of these results.
Note that for some candidates, the nodes matched for
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Table 1. A subset of the match candidates returned for the high school query. Identifiers in boldface indicate true positives, while -1
indicates a missing value.
Football field Distance
Identifier Class area Area Ratio Per Parking area Tennis courts CB-FF CB-PL CB-TC
High school 1 16136 10235 2.23 562 46 364 75 0 23
High school 2 14802 9530 2.44 584 32196 95 0 26
High school 3 13 640 8957 2.36 773 41296 46 0 77
Museum 7522 9904 2.30 499 23798 29 29 170
Training Center 2 11411 9904 2.30 499 16301 26 26 69
9402 9530 2.44 584 32196 314 18 —1

Middle School 1

CB = class building, FF = football field, PL = parking lot, TC = tennis court.

Table 2. Preferred and allowable values for high school node attributes.

Node Attribute Minimum allowable Minimum preferred Maximum preferred Maximum allowable
Classroom Area 5000 12189 21363 40 000
Football Area 8500 8963 10070 10 500
field Axis ratio 1.50 2.17 2.47 3.00

Perimeter 475 507 611 800
Parking Area 15000 23280 49303 55000
Tennis Area 400 1168 4390 5500
Courts Axis ratio 1.00 1.05 3.30 4.00
Perimeter 100 154 354 400
Width 30.0 322 36.5 37.0
Distances Class—FF 5 48 254 450
Class—Park 0 0 30 100
Class—TC 5 26 77 200

FF = football field, TC = tennis court.

football fields and tennis courts are false positives, and
some candidates do not match the tennis court at all.

Our all match evaluation methods rely on the allowable
and preferred value ranges in evaluating match candidates.
In practice, these values are selected by the analyst when
constructing the search template. Table 2 lists the values
used throughout the remainder of the paper. Note that the
allowable range corresponds to the required values used by
the search algorithms when identifying candidate matches.

In the following, we evaluate and provide uncertainty
intervals for each match candidate, using the evaluation
results to rank the candidates. Ideally, the true high schools
should score near the top of the list and guide image
analysts to minimize the number of non-high schools
considered. The task is similar to the page ranking that web
search engines perform, with the critical difference that we
lack a query-independent evaluation criterion such as page
linkage.

4.1. Elicited Beta Distribution Model

The elicited model requires one elicitation (of two
values) per feature. To reduce the number of elicitations,
we excluded some of the features defined by the query

template. The final feature set includes classroom area,
parking lot area, football field area, distance from football
field to building, distance from parking lot to building,
football field axis ratio, presence of tennis courts, and
given the courts, the tennis court area, tennis court width,
and distance from tennis courts to the building. We also
included an interaction term between building area and
parking lot area for a total of 12 required elicitations
(including the constant term). The latin hypercube uses both
the preferred and allowable boundary values for each node
attribute when selecting elicitation points.

We performed two simulations: one with the expert-
elicited distribution, and one with independent uniform
prior distributions assigned to each P(x;). For each of the
40 matches returned by the search, we randomly selected
ten training sets of size 6, 12, 18, 24, 30, and 36 from the
remaining 39 matches. We selected positive and negative
examples in a ratio of 1:2 to agree with the full set of 40
matches. The probability distributions were then calculated
based on R = 40000 markov chain monte carlo (MCMC)
draws.

The top panel of Figure 4 summarizes the results based
on 36 training examples and the expert elicited distribution.
The plot shows the 5th, 50th, and 95th percentiles for all
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Fig. 4 Results for the three methods over all 40 high school candidates. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

40 candidate matches as calculated from the training set
that yielded the distribution with the 5th largest median
(of the ten training sets). The 40 matches are sorted along
the x-axis by the median values, yielding an ordering that
an analyst would see. Of the 13 high schools, 12 sorted
into the top 15 results, with High School 13 as the only
exception. Several middle schools also sorted near the top.
This is expected, as some of the middle schools are sized
similarly to, co-located with, and share athletic facilities
with a high school. The rank ordering remains unstable until
approximately 24 training examples (not shown), though
most high schools tend to rank in the top 25.

Figure 5 illustrates the relationship between the cal-
culated conditional probability, uncertainty intervals, and
number of training examples using learning curves for
both the elicited and uninformative prior models on three
selected search results. For smaller amounts of training

Statistical Analysis and

data, including the elicitation-only model (zero training
examples), the spread between the 5th and 95th percentiles
is predictably larger. Finally, our results showed that the
elicited priors improved the candidate ranking relative to
the uniform prior when training examples were sparse, but
did not consistently reduce the width of the uncertainty
intervals. Larger numbers of examples (> 30) tended to
dominate the effects of the priors.

4.2. Naive Bayesian Model

We applied naive Bayes using all 12 numeric attributes
included in Table 2 after discretizing according to the
indicated boundary values. We then used the Monte Carlo
methods described in Section 3.2 to construct distributions
for the probability that a match represents a high school
given the observation and training sets of size 6, 12, 18,
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Fig. 5 Learning curves for the elicited prior, uninformative prior, and naive Bayes models for three selected examples. Points represent
median values and the bars span the 5th percentile to the 95th percentile. Points for the three methods are offset slightly in the plot to
increase readability. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

24, 30, and 36. From these, we collected statistics similar
to those collected for the elicited model.

The center panel of Figure 4 shows results for 36
training examples. All high schools are ranked highly
except two, with 11 of the 13 high schools in the
top 17. Middle schools constitute most of the highly
ranked non-high schools. Notice the steep drop in median
probability values between the 10th and 15th results. This
is a side-effect of independence assumption violations,
which pushes most of the probability mass toward the
extremes. That the drop is not more precipitous suggests
that the attributes are reasonably independent. Likewise,
the bulk of the uncertainty resides with a handful of the
candidates. Specifically, the ten candidates that have median
probability estimates between 0.15 and 0.85 also have the
highest uncertainty. This may also be a side effect of the
independence assumption: as violations push probability
estimates toward the extremes, they also increase variability
due to minor differences in training data.

The learning curves in Figure 5 show uncertainty pre-
dictably falling while median probabilities remain stable
as the number of training examples increases. There are
some exceptions to this trend, however. Also noteworthy
is that naive Bayes tends to have larger uncertainty inter-
vals than either of the elicited models given few training

examples. However, the intervals become comparable for
larger amounts of training data.

4.3. Distance-Based Quality Metrics

The following results are based on the assumption that
30 = 0.3 m (see Section 3.3), which corresponds to one
half pixel width. We assume that image segmentation makes
the correct decision nearly all the time (pixel classification
accuracy was > 97%). A geospatial boundary occurs when
two pixel types (such as pavement and dirt) are adjacent in
the land cover map. The true boundary could be up to one
half pixel in either direction.

The lower panel of Figure 4 shows the results for the
distance-based approach. The all 13 high schools appear
in the top 20 results, though middle schools represent an
important source of confusion. Importantly, the median
quality scores do not drop as steeply as the probabilities.
This is an advantage in that it indicates just how similar
the true positives are to the false positives, but also a
disadvantage in that the numeric scores do not provide a
clear indication that some matches are better than others.

The uncertainty intervals require detailed consideration.
Many of the 5th percentile scores are near zero, even for
candidates with high medians. The problem arises because
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the search returns results where some parameters are near
the allowable limits. When the Monte Carlo simulation
dithers these by 4+30, some of the generated samples fall
outside the allowable limits, driving the quality scores to
near zero. For poor matches, it is unsurprising that the
dithering would cause the quality score to fall. However,
when the uncertainty bars on high-scoring matches extend
to zero the user may perceive an error in the results.
In practice, large uncertainty on high-scoring matching
suggests that the allowable limit is too close to the preferred
range. The dithering process takes an attribute within or
near to the preferred range and samples it outside the
allowable limit.

The sharp drop in 5th percentile scores follows from
the discontinuity in the distance functions. When attributes
such as area and perimeter are near the allowable cut-
offs, sampling over a distribution of possible boundary
locations causes some of the samples to fall outside of the
allowable range, giving them a quality of zero. One possible
solution is to ensure that the allowable limits are more
than 30 from the preferred range. We can also improve the
sampling windows, which may be unreasonably large for
some attributes. For example, perimeter values may vary
excessively given the simple 3¢ estimation, requiring a
more sophisticated calculation.

5. DISCUSSION

One salient feature of the graphs in Figure 4 is the
disagreement in rank ordering among the three scoring
methods. Several factors contribute to these differences.
First, note that the notion of a well-defined ‘correct’ ranking
does not exist for the high school search task. Clearly
true high schools should rank highly while other locations
receive lower rank, but the desired ordering among true
high schools is unclear. Likewise, it is unclear how a sports
complex should compare to a furniture store that happens
to be located adjacent to a park.

With this in mind, compare the top ten results from
each scoring method. The elicited and naive Bayes models
agree on eight. Naive Bayes includes one commercial
building that the elicited model does not, but the other
disagreement simply swaps one high school for another.
Similarly, the elicited and distance models agree on seven
of ten, with two of the remaining three being high school
swaps. A comparable pattern holds for naive Bayes and the
distance metric. From a practical point of view, the three
methods produce very similar results. A related argument
can be made for low-ranking candidates with the added
consideration that in most cases, the median probabilities
and quality scores differ by insignificant amounts, which
implies that the specific ordering is arbitrary.

Some inconsistencies between the probabilistic models
stem from a lack of data. Given the number of attributes and
threshold values (see Table 2), 36 training examples cannot
cover all possible combinations. As a result, portions of the
models may rely entirely on the prior, giving the elicited
model an advantage over naive Bayes.

Computationally, the elicited model requires significantly
more cycles than the other methods due to its reliance
on MCMC algorithms. It also requires operator control to
ensure proper MCMC burn-in and to conduct the knowl-
edge elicitation. Creating the elicitation examples required
several hours, though it may be possible to automate the
process. These two issues imply that the elicited approach
may not be appropriate if the analyst needs immediate
results. Naive Bayes requires only that the analyst label
examples, and can easily scale computationally to large
numbers of candidate. The distance-based metric will also
scale up easily.

A clear next step of our work is to extend the probabilistic
methods to handle uncertainty in geospatial boundary
location, and all three methods need extension to label
uncertainty. In conjunction, the land cover map must be
improved to provide uncertainty information calculated at
the pixel level for both boundary locations and labels. The
registration and classification algorithms used by O’Neil-
Dunne et al. [5] cannot trivially be extended to produce this
information, and we are currently working on a solution.

The added uncertainty information would help with
situations such as the Private School candidate, which
is a private high school. Due to a combination of poor
data quality and gross labeling errors, the school’s football
stadium is not properly labeled, and the nearby practice field
is also missed. The search finds another (incorrect) field, but
the resulting attributes make for a poor match. None of the
methods can currently handle this case, because none of
them account for label uncertainty. We therefore excluded
Private School from the list of high schools, as we have no
expectation that the search algorithm could systematically
find similar examples.

We can also improve the accuracy of the elicited
priors by using a more formal elicitation process, such
as described by O’Hagan et al. [18]. Separately, while
the Latin Hypercube is in theory a good method for
selecting informative elicitation points, in practice it tends
to create only marginal examples. As a result, the expert
gives middling probabilities to all elicitation points, and
the resulting prior is only mildly informative as evidenced
by the wide uncertainty intervals. A better approach might
be to pair the elicitation with an initial search, so that
the elicitation points are real candidate matches. This is
approximately equivalent to labeling data, but may produce
useful models more quickly. In a similar vein, our elicitation
efforts revealed that potentially important features, such as
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proximity to other buildings, were ignored. Elicitation may
therefore also need to be paired with query construction, as
it is in the distance-based approach.

6. CONCLUSIONS

Geospatial semantic graphs offer a new approach in
analyzing overhead imagery and other types of data.
Our work develops practical uncertainty methods that
analysts can use to inform their conclusions. The three
methods presented use different information sources, such
as elicitation, training data, and distance measures. They
also consider different sources of uncertainty, such errors
in raw data and initial processing, training examples, and
tolerance in the search pattern. Ultimately, all of these
need to be accounted for by a single solution while
still producing information interpretable by the analyst
end-users.

In practice, a hybrid approach may be required. During
the initial design of novel queries, labeled examples will
be unavailable, and elicitation may be infeasible if the
analyst is unsure of how to describe the pattern. The
distance-based metrics are most appropriate in this case,
as they naturally support an iterative query design process.
However, as the search begins to return results that include
positive examples, analysts can label data to support the
probabilistic models. Ultimately, we expect the probabilistic
methods to provide better discrimination, as they implicitly
capture from training data aspects of the target pattern that
are not captured by the query specification.
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