
Machine Learning-based Product Recommendation using Apache Spark

Lin Chen ∗, Rui Li ∗, Yige Liu ∗, Ruixuan Zhang ∗, Diane Myung-kyung Woodbridge
{lchen74,rli33,yliu225,rzhang45,dwoodbridge}@usfca.edu

Master of Science in Analytics (MSAN) Program,
University of San Francisco,

San Francisco, California

Abstract—There have been growing interests in the area
of recommender systems using machine learning techniques.
As there are a great number of explicit and implicit features
that can be used for estimating user preference, it requires
scalable and accurate algorithms along with a system with
high availability and scalability. Alternating least square matrix
(ALS) algorithm is an enhanced version of latent factor models
using matrix factorization with good scalability and predictive
accuracy. Apache Spark is an open-source distributed platform
for processing big data, achieving good speed and scalability
suitable for iterative machine learning algorithms. Amazon
offers cloud computing services with various functionality
including data storage and processing engines and is highly
available and scalable. In this study, we applied the ALS algo-
rithm using Apache Spark running on an Amazon Web Service
(AWS) Elastic Map Reduce (EMR) cluster for recommending
a product with a good accuracy and enhanced scalability.

Keywords-collaborative learning, machine learning, Apache
Spark, Amazon Web Service (AWS)

I. INTRODUCTION

Recommender systems have become an emerging research
area with the growth of e-commerce and web services
including advertisements for providing personalized recom-
mendations to a user. For example, Amazon, one of the
largest online retailers in the world, has been using robust
data-driven analytics to optimize its market growth for over
304 million active customers with 12.2 million products
carried [1], [2]. When customers browse, buy and review
products, the system provides them product recommenda-
tions to increase sales and improve customers experience
based on their history.
For enhancing the outcome of a recommender system, many
researchers have been developed recommender algorithms
that utilize both explicit and implicit user feedbacks [3].
While explicit feedbacks include a user’s product ratings and
reviews, implicit feedbacks include purchase histories, click
patterns, search histories, etc. However, as explicit feedbacks
are not always available and are limited most of the time, in-
ferring user preference using implicit feedbacks is inevitable.
However, including implicit feedbacks increases the number
of features to consider and requires both an algorithm and
a system that are highly scalable.

Various collaborative filtering (CF) algorithms using user
ratings of products to predict user preference have shown
good predictive accuracy. Collaborative filtering and its
variations have been optimized to work on big data sets,
showing good scalability [4]. Recently, as implicit feedbacks
became available and are commonly used in recommender
systems, there have been many active ongoing research on
more accurate and scalable algorithms for processing both
explicit and implicit feedbacks [5][6].
Distributed computing is designed for running big data
on a cluster of many machines to make computation re-
liable, fast and inexpensive. On distributed computing, a
MapReduce job splits the data into smaller chunks into
different partitions and a map task such as filtering and
sorting jobs processes it in a parallel manner. The output
of a map task becomes an input of a reduce operation
which performs a summary operation. Spark extends the
MapReduce model for efficient data sharing and combines
structured data processing, graph algorithms and machine
learning all in a single framework. Spark runs programs up
to 100 times faster than Hadoop MapReduce and provides
easy development environment [7].
This study was designed to develop a scalable recommender
system using the alternative least square matrix algorithm
which is a collaborative filtering algorithm and Apache
Spark, a scalable cluster computing framework. In our
study, the Apache Spark was running on Amazon Web
Service (AWS) Elastic Map Reduce (EMR) and the data was
uploaded from AWS Simple Storage Service (S3), a durable
and scalable data storage, onto the EMR cluster. EMR
provides a Hadoop framework for processing vast amounts
of data easy, fast, and cost-effective across dynamically
scalable Amazon Elastic Computing Cloud (EC2) instances
and can interact with data in AWS S3. For enhancing
computation performance, we performed various levels of
configurations in parallelism, driver and executor memory. In
our study, we utilized Amazon book review data to validate
its performance and scalability.

∗ Theses authors contributed equally.



Figure 1: System workflow

Figure 2: Joined DataFrame with newly generated unique IDs and ratings.

II. SYSTEM OVERVIEW

A. System Workflow

In this study, we developed a pipeline to load and
process data in a cluster (Figure 1). AWS provides high
availability and scalability and makes its components
including storage and processing engines to be compatible.
AWS S3 is a durable and scalable object storage system
that could be automatically extendable, if it requires more
data storage. AWS EC2 is a cloud server and provides auto
scaling features that scales up and down by increasing and
decreasing EC2 instances based on demands to maintain
high throughput.
In our study, data is stored in an S3 bucket which we can
easily load data from and transfer to an AWS EMR cluster
publicly or using user authentication. Apache Spark is

installed on AWS EC2 nodes managed by the EMR cluster
using a Hadoop YARN (Yet Another Resource Negotiator)
cluster manager. YARN is a Hadoops resource manager and
execution system and can run other types of jobs other than
MapReduce including Spark. YARN consists of a resource
manager and multiple node managers along with a client
process, a driver and executors [8]. In the YARN cluster,
users can manage memory properties including driver and
executor memory. The master runs the driver which requests
memory and CPU resources from the cluster manager and
sends tasks to executors. The executor runs tasks in parallel
and its memory property affects the amount of data Spark
can cache.
In our study, the data process pipeline was built with six
steps: 1) Data transfer, 2) RDD creation, 3) DataFrame
creation, 4) DataFrame processing, 5) recommender



algorithm training and 6) prediction.
Spark Core is a foundation of the system and provides
basic Spark components including resilient distributed
datasets (RDDs) and functions. RDD is an abstraction of a
distributed collection of data with operations applicable to
the data and provides networking, security, scheduling and
data shuffling functions. In this work, we created RDDs
from the data in the S3 bucket and used it for DataFrame
conversion.
Spark SQL provides functions for manipulating large sets
of distributed and structured data including DataFrames and
DataSets, where a DataSet is a distributed collection of data
and a DataFrame is a subset of a DataSet. A DataFrame
includes columns and values and is similar to a table in a
relational database management system (RDBMS). Spark
translates them to operations on RDDs and executes as usual
Spark jobs [7][9]. Spark SQL uses SQL-like functionalities
and query languages. In our system, each of the RDDs
is piped to DataFrame generation using SparkSQL and
DataFrame schema definition. Then the DataFrames are
joined as one DataFrame using their keys. An example of
a joined DataFrame is depicted in Figure 2.
For training recommender model, we utilized the alternating
least square matrix model (ALS). The algorithm details are
described in Section II-B. We split the data into training
and testing sets. Training data is for building a model,
while testing data is for evaluating the accuracy of the
model. For testing, to make a recommendation for each
customer, we returned the predicted ratings in descending
order and provided the corresponding item details. We used
root mean square error to evaluate the model performance
and tuned parameters through a grid search.

B. Algorithm

In order to recommend a product, we applied the Al-
ternating Least Squares (ALS) matrix factorization method
[5], [6], [10], which is an advanced version of collaborative
filtering method. Collaborative filtering (CF) is a recom-
mendation method based on user behavior similarity. CF
provides a recommendation to that user or others who have
similar tastes by measuring rui, which is an observation
of item i from user u such as rating and implicit user
behaviors. rui could be explicit ratings including reviews or
implicit ratings such as browsing or purchase frequencies.
Using k items rated by u that are most similar to i and
similarity measure sij between item i and j, item-oriented
CF calculates a predicted rating r̂ij .

r̂ij =

∑
j∈Sk(i;u) sijruj∑
j∈Sk(i;u) sij

(1)

Item-oriented CF models do not distinguish between
explicit user preference and implicit information.

As an explicit review is not always available, a recommen-
dation algorithm also needs to infer user preference based
on implicit user behaviors. For instance, if a user tends to
browse books from a same author often, we can assume
that the user likes the author. A latent factor (LF) model is
developed for uncovering these latent features that explains
observed ratings. As an example, a model could be induced
by singular vector decomposition (SVD) of a user u with
a user-factor vector xu ∈ R and item i with a item-factors
vector yi ∈ R given in Equation 2.

minx,y
∑

(rui − xTu yi)2 + λ(‖xu‖2 + ‖yi‖2) (2)

where λ is a regularization factor and parameters are
learned by stochastic gradient descent (SGD). LF model
shows better accuracy and scalability than conventional CF
models.
The Alternating least square (ALS) matrix factorization
algorithm is an improved version which applies both explicit
and implicit user feedback and denotes the strengths in
observations of implicit feedback. The ALS method uses
binary variable of the preference of user u to item i, pui,
where

pui =

{
1 rui > 0

0 rui = 0
(3)

Equation 3 means that if a user u rates or browses item i
(rui > 0), this means that u likes i. Otherwise, there is no
preference. For pui = 1, we can calculate confidence level
cui, where cui increases according to rui.

cui = 1 + αrui (4)

where α is a constant and Hu’s experiments demonstrate
good results with α = 40 [5].
Using the preference and confidence matrices, the algorithm
finds latent factors of a user’s preference to an item factored
by xu and yi and recommends items. User and item factors
are obtained from the objective function in Equation 5.

minx,y
∑

cui(pui − xTu yi)2 + λ(
∑
u

‖xu‖2 +
∑
i

‖yi‖2)

(5)
where λ is data-dependent and determined by cross-

validation. All possible u and i pairs should be calculated for
unobserved data and the possible combinations of users and
items could be easily over a few billion. The ALS matrix
algorithm applies an efficient optimization process by fixing
either user factors (xu) or item factors (yi) and recomputing
the other factor alternately and achieves linear computing
time.



Data Set Input Format Size

Book Rating .csv 22,507,155 ratings (873.8 MB)
Product Review .json 8,898,041 reviews (9.8 GB)

Table I: Amazon Book Review and Rating Data

(a) Example: User rating data.

(b) Example: Product review data.

Figure 3: Example input data.

III. EXPERIMENT OUTPUT

The purpose of the experiment is to use customers’
previous ratings (r) of products to calculate predicted ratings
(r̂) of other products. The system provides recommendations
to a user based on the highest predicted ratings using ALS
developed on the Apache Spark and AWS frameworks. We
chose Amazon review data to train a model and provide
personalized recommendations. We used PySpark (version
2.1.0) on EMR (version 5.2.1) and the Spark Python API to
process our data and applied the ALS algorithm to build a
recommendation system.

A. data

For training and testing a recommender model, we uti-
lized Amazon book reviews and product review metadata
collected between May 1996 and July 2014 (Table I) by
McAuley [11][12].

The book rating data includes a user ID, item ID,
timestamp and rating without any missing values in the
dataset or any outliers in the rating column. The user ID and
item ID are both strings composed of numbers and letters,

(a) Training data set.

(b) Test data set.

Figure 4: Example : Subset of training and test data from a
user who likes vampire stories.

while the ratings are categorical integer values between 1
and 5. The number of unique User ID in the dataset is
8,026,324. For recommending items and their details to
a user, we mapped the item ID with item names using
product review metadata which includes the information of
over 9.40 million Amazon products. The product review
metadata contains an item ID, item name, price, product
URL, items others also bought together, etc. (Figure 3).

B. Results

1) Recommender System: The product ratings (.csv) in
Table I were loaded as RDD objects with the number of
partitions equivalent to 3 times of the number of cores. The
product review RDDs from the .json file in Table I are in
a key-value pair format and its key is also contained in the
first RDD. The RDDs were built for the later DataFrame
conversion. The book rating DataFrame contains the
information for both building the ALS model and locating
detailed information of the recommended item. Once a



Table II: Performance comparison based on machine types.

Figure 5: Cost comparison based on machine types.

recommendation is available from the model, the predicted
item ID was used to retrieve detailed information including
book titles from the product review DataFrame.
ALS in Spark ML was applied to build the recommendation
engine [10]. ALS learns a set of latent factors for users and
items and generate predicted ratings, aiming at minimizing
the error between actual ratings and predicted ratings. The
final output of the model is a matrix of predicted ratings,
formed as a user and item ID combination.
We used root mean squared error (RMSE) to evaluate the
model performance. RMSE measures an average distance
between the predicted rating and the actual rating.

RMSE =

√∑
(rui − r̂ui)2

k
(6)

The achieved RMSE value using the experiment data
with different configurations is described in Table II.
The parameters associated with the model are as followed:
rank = 30, maxIter = 20, regParam = 0.1. rank is the
number of latent variables in the model. As the algorithm
generally converges to a promising solution within 20
iterations, we set maxIter = 20. regParam specifies the

regularization parameter.
Finally, for each User ID, we ranked the predicted
ratings for all the items in descending order, and we only
recommended top-rated items.
For example, the user AM3YQ21A0JZSH, who tends to
give higher ratings on vampire-related books, received book
recommendations in Figure 4. We can see that these books
are also vampire mysteries.

2) Performance: Based on the trials of different settings
on EMR, we found that the selection of cluster size and
number of nodes should be based on the characteristics of
a dataset and specific to a utilized algorithm. Increasing the
numbers of nodes on AWS EMR might require more time
due to the cross-node connections and network traffics. The
number of cores and the RAM size of each cluster should
also refer to the requirement of the algorithm and the size
of the data.

• Size: The cluster should have enough driver and exe-
cution memory to process the data.

• Algorithm: The cluster should have the ability to
process data with a required number of iterations.

As to this practice, as long as one machine can process
the program well, using just one machine is optimal for
cost and time as it has less data transfer. If building a better
model (one with a lower RMSE for this case) is the goal, we
recommend choosing a machine that is capable of running
the algorithm. If cost is a concern, choosing a cluster with
multiple cheap machines might be also the choice. As AWS
provides various server options with different CPU, memory,
storage, and networking capacity, a developer should choose
one that is suitable for her or his own needs.
We compared performance and price with different options
in Table II and Figure 5. The local machine used for this
study was a MacBook Pro with 16 GB memory, quad-core
Intel Core i7 at 2.5 GHz using a Spark standalone cluster
manager.

Fig 6 shows the system performance, as the size of
dataset changes. The experiment was done on a single
YARN instance with 32 cores.
There are two types of memory setting we considered
for PySpark configuration: execution memory and storage



Figure 6: System performance with different data sizes.

memory. Since the algorithm for our model requires
multiple iterations, if the storage memory is too small, there
would not be enough space to cache the training data which
was repeatedly used for modeling. On the other side, if the
execution memory is not sufficient, the task might fail for
the reason of a container killed by YARN for exceeding
memory limits. This scenario could be prevented by setting
the spark.yarn.executor.memoryOverhead configuration
when submitting a Spark application.
One example of configuration for submitting an application
is shown below.

–master yarn
–deploy-mode client
–driver-memory 1024M
–executor-memory 2048M
–num-executors 2
–conf spark.yarn.executor.memoryOverhead=512

Setting the memory size and memoryOverhead for
an executor is an important step when submitting an
application to clusters. Configurations for applications
running on a cluster might take a few times to make sure
to make the most use of the machines.

IV. CONCLUSION

In this work, we developed a product recommender
system using Apache Spark and its ALS algorithm. In order
to enhance scalability of the algorithm, we developed the
system on the Amazon Web Service (AWS) framework.
We also compared its performance using different settings
including Spark standalone and Hadoop YARN cluster
managers with different configurations. The experiment

results showed a decent root mean square error as an output
of the recommender model with efficient run time. The
experiment also showed that running on a YARN cluster
outperforms even with reasonable cost for the dataset we
utilized.

REFERENCES

[1] Statistica, Statistics and Facts about Amazon. [Online].
Available: https://www.statista.com/topics/846/amazon/

[2] 360pi, How Many Products Does Ama-
zon Actually Carry? And in What Cate-
gories? [Online]. Available: http://360pi.com/press release/
many-products-amazon-actually-carry-categories/

[3] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez,
“Recommender systems survey,” Knowledge-based systems,
vol. 46, pp. 109–132, 2013.

[4] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Scalable
collaborative filtering approaches for large recommender sys-
tems,” Journal of machine learning research, vol. 10, no. Mar,
pp. 623–656, 2009.

[5] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for
implicit feedback datasets,” in Data Mining, 2008. ICDM’08.
Eighth IEEE International Conference on. Ieee, 2008, pp.
263–272.

[6] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization
techniques for recommender systems,” Computer, vol. 42,
no. 8, 2009.

[7] A. Spark, “Apache spark: Lightning-fast cluster computing,”
2016. [Online]. Available: http://spark.apache.org

[8] M. B. Petar Zecevic, Spark in Action. Manning Publications,
2016.

[9] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al.,
“Spark sql: Relational data processing in spark,” in Proceed-
ings of the 2015 ACM SIGMOD International Conference on
Management of Data. ACM, 2015, pp. 1383–1394.

[10] Apache Spark, Collaborative Filtering - spark.ml. [On-
line]. Available: https://spark.apache.org/docs/2.0.0-preview/
ml-collaborative-filtering.html

[11] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel,
“Image-based recommendations on styles and substitutes,” in
Proceedings of the 38th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval.
ACM, 2015, pp. 43–52.

[12] J. McAuley, R. Pandey, and J. Leskovec, “Inferring networks
of substitutable and complementary products,” in Proceed-
ings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2015, pp.
785–794.

https://www.statista.com/topics/846/amazon/
http://360pi.com/press_release/many-products-amazon-actually-carry-categories/
http://360pi.com/press_release/many-products-amazon-actually-carry-categories/
http://spark.apache.org
https://spark.apache.org/docs/2.0.0-preview/ml-collaborative-filtering.html
https://spark.apache.org/docs/2.0.0-preview/ml-collaborative-filtering.html

