
Medhere : A Smartwatch-based Medication Adherence Monitoring System
using Machine Learning and Distributed Computing

Jinxin Ma 1, Anaelia Ovalle2 and Diane Myung-kyung Woodbridge3

Abstract— Poor medication adherence threatens an individ-
ual’s health and is responsible for substantial medical costs
in the United States annually. In order to improve medication
adherence rates and provide timely reminders, we developed
a smartwatch application that collects data from embedded
inertial sensors, which include an accelerometer and gyroscope,
to monitor a series of actions happening during an individual’s
medication intake. After the collected data was delivered to a
server, Apache Spark was used to distribute the data and apply
machine learning algorithms in order to predict several discrete
actions including medication intake. By utilizing these tools, we
were able to preprocess high frequency sensor data and apply
a random forest algorithm, yielding high frequency and recall
of the aforementioned actions.

I. INTRODUCTION

In 2010, patients in the U.S. spent $295 billion on
prescription medicines, while the medication non-adherence
rate was between 25% and 50%. Such low medication
adherence rate costs between $100 and $300 billion
annually, representing 3% to 10% of total health care costs
in the US. Furthermore, the low medication adherence
rate can increase hospital readmission rates and potentially
cause a social and economic burden for the patient and their
family. This may include higher copayments for the patient
and even higher costs for employers to maintain healthcare
coverage [1].
Conventionally, patients record and follow their medication
intake using medication log sheets, text message reminders
([2], [3]) or smartphone logging applications [4]. In order
to improve the medication adherence rate, many recent
studies have been developing systems utilizing low cost and
wearable sensors which can remind, monitor medication
intake and provide feedback. Chen’s study utilized inertial
sensors and a RGB-Depth camera in addition to an
accelerometer and gyroscope that was attached to a patient’s
wrist to collect data. Dynamic time-warping was then
applied to measure the similarity between time-series data
with different lengths [5]. Hasanuzzaman’s work used RFID
tags attached a medication bottle along with captured images
from a video camera for detecting a subject’s face and
activities [6]. Kalantarian utilized smartwatches attached
to a patient’s both wrists for collecting and processing
accelerometer and gyroscope data in order to detect a series

1Jinxin Ma is with the Analytics Program, University of San Francisco
jma33@dons.usfca.edu

2Anaelia Ovalle with the Data Science Program, University of San
Francisco aovalle@dons.usfca.edu

2Diane Myung-kyung Woodbridge, Ph.D. is an assistant profes-
sor at the Data Science Program, University of San Francisco
dwoodbridge@usfca.edu

of activities including 1) opening a bottle and 2) twisting a
cap by using the distribution of the sensor readings [7].
Considering the ease of use, it is better to use embedded
sensors in one device which is easy and light to wear.
Additionally, a device that supports seamless data transfer,
has a long battery life and is of durable quality improves
usability. In that sense, a smartwatch provides higher
usability and social acceptance along with capabilities of
measuring and transferring activity data. A survey with
221 people from Kalantarian’s work shows that 72% of
participants responded positively to wearing smartwatches
[7].
Activity sensors including an accelerometer and gyroscope
collect three dimensional data with frequency of up to 1000
Hz. This multidimensional high-frequency time-series data
requires scalable solutions for storage, data-processing, and
the application of machine-learning algorithms. Storing
high-frequency data in the multi-user setting requires a
cloud storage service which is scalable and accessible. Since
motion data is captured per millisecond, the size of the data
increases exponentially. Acknowledging these constraints,
it was found that Amazon Web Service’s (AWS) Simple
Storage Service (S3) could provide sufficient, cost-effective
storage based on these needs. With S3, data is accessible
from anywhere with an option to replicate across many
regions. Additionally, S3 offers a secure infrastructure
through access policy options that allow only authorized
users to access the data.
Distributed computing is designed for running big data on a
cluster of many machines to make computation reliable, fast
and inexpensive. Using distributed computing, a MapReduce
job splits the data into smaller chunks followed by allocating
the data to different partitions. A map task such as filtering
and sorting can then process each partition in a parallel
manner. The output of a map task becomes an input of
a reduce operation which performs a summary operation.
Apache Spark extends the MapReduce model for efficient
data sharing and combines structured data-processing and
machine learning all in a single framework. Spark runs
programs up to 100 times faster than Hadoop MapReduce
and provides an easy development environment [8].
In this study, we developed a smartphone-based medication
adherence monitoring system to collect a patient’s motion
data using an Android smartwatch during medication intake.
The data was then stored in Amazon Web Service’s (AWS)
Simple Storage Service (S3) and analyzed by using Apache
Spark.

II. SYSTEM OVERVIEW

A. System Workflow

Smart-watches are good activity-monitoring devices as
they contain various embedded sensors such as a three-axis
accelerometer, gyroscope, near-field communication (NFC),
and heart rate monitor. These seamlessly integrated sensors
provide a much less obtrusive monitoring experience in
comparison to smartphones or other wearable devices such as
a heart rate monitor chest strap. By analyzing data collected
from the sensors embedded in a smart-watch, an application
can understand the context of an event and provide the right
information a user might need. Additionally, information
provided from a watch is more easily accessible than in-
formation provided from other devices including a laptop,
tablet or smartphone [9]. In this study, we utilized an LG
Watch Sport which is the first Android watch running on
Android Wear OS 2.0.

Once data is transmitted to the server, the data-processing
pipeline was built with four steps: 1) RDD creation, 2)
DataFrame creation, 3) DataFrame processing, and 4)
Activity classifications using machine learning algorithms.
Spark Core is a foundation of the system and provides basic
Spark components including resilient distributed datasets
(RDDs) and functions. An RDD is an abstraction of a
distributed collection of data with operations applicable to
the data and provides networking, security, scheduling and
data shuffling functions.
In this work, we created RDDs from the data in the S3
bucket and used it for DataFrame conversion. Spark SQL
provides functions for manipulating large sets of distributed
and structured data. This structured data takes the form of a
DataFrame which includes columns and values, similar to a
table in a relational database management system (RDBMS).
Spark translates them to operations on RDDs and executes
them as Spark jobs [8][10]. Spark SQL uses SQL-like
functionalities and query languages. In our system, each of
the RDDs is piped into a DataFrame using SparkSQL and
DataFrame schema definitions.

B. Algorithm

1) Data Preprocessing: In order to save storage and
computing resources, the data is only collected from the
smartwatch application when there is a new sensor event
triggered by an accelerometer or a gyroscope. Therefore, for
discretizing the data and calculating the statistics of data,
missing data imputation was necessary. Additionally, as this
work applies classification algorithms to different lengths of
timeseries data from the 3-axis accelerometer and gyroscope,
data discretizion was applied. The psuedo-code for missing
data imputation is listed in Algorithm 1 .

Once missing data is imputed, we discretized high-
frequency data which was collected by the millisecond. As
the time duration of each data varies, we reduced the time
series data length of n to the length of f (f ≤ n) and
calculated statistics for the entire data and over a sliding

Algorithm 1 Missing data imputation psuedocode

1: if first reading[timestamp] > min timestamp
then:

2: time = min timestamp
3: else
4: time = first reading[timestamp]
5: end if
6: while first reading[timestamp] > time do:
7: reading = first reading[sensor data]
8: time+ = time increment
9: end while

10: for data in sensor readings do:
11: while time < data[timestamp] do:
12: reading = prev reading
13: time+ = time increment
14: end while
15: reading = data[sensor data]
16: time+ = time increment
17: end for
18: if time <= max timestamp then:
19: reading = prev reading
20: time+ = time increment
21: end if

window. When the original time series after imputing missing
data is C = c1, ..., cn, the mean over the sliding window
(C) is calculated by (1). In addition to the mean in (1), we
also calculated other statistical values including minimum,
maximum, median and standard deviation accordingly.

µi =
f

n

n
f i∑

j=n
f (i−1)+1

cj (1)

2) Training and Test Sets Split: We applied a stratified
shuffle-split to convert the original data set into a training set
that had 80% of samples and a test set that had the rest 20%
of samples. A stratified shuffle-split divides the raw dataset
into homogeneous subgroups. In our research, each subgroup
is an activity. Afterwards, the correct number of samples is
drawn from each subgroup to ensure that the training and test
sets are representative of the overall population. A stratified
shuffle-split can reduce sampling bias where a random split
may fail.

We then trained a machine learning model on the training
set and made predictions on the test set. This allowed us to
see if the model generalized well on unseen data.

3) Machine Learning Model: Random forest models were
used throughout the modeling process. A random forest is
a ensemble method that trains several decision tree models
separately and aggregates predictions from each decision tree
to make final predictions [11].
Compare to a single decision tree, random forest has the
following differences:

Fig. 1: Android application, AWS S3 and Apache Spark for data collection, storage and processing accordingly.

• Decision tree uses all samples in the training set while
each tree in random forest is constructed from a pro-
portion of samples (usually 30%) randomly drawn with
replacement from the training set.

• When splitting a node during the construction of deci-
sion tree, the best split is chosen among all features.
In random forest, the split of a tree is chosen among a
random subset of features.

As a result of the randomness, random forests usually yield
a model that generalizes well on unseen data. In addition,
random forests are implemented in Apache Spark which
allows our solution to be scalable.

III. EXPERIMENT OUTPUT

For the experiment, we utilized the LG Watch Sport
running on Android Wear 2.0 with API version 26 and
Apache Spark version 2.2.

A. Data

We collected data of six different activities including 1)
medication intake while wearing a watch on one’s non-
dominant wrist, 2) medication intake while wearing a watch
on one’s dominant wrist, 3) walking, 4) texting, 5) writing
with a pen, and 6) drinking bottled water. For the activities 3)
- 6), a study subject could wear the watch on their preferred
wrist.
This study was approved by the University of San Francisco
Institutional Review Board (IRB) and we collected the afore-
mentioned data from six different subjects listed in Table I.
The duration of each activity varied from 2.85 to 16.13
seconds. Figure 2 visualizes an example of a sensor data
stream from one of the subjects as they took a pill, wearing
the watch on one’s dominant wrist. This activity included
opening a medication bottle, placing a pill into the mouth,
closing the medication bottle.
After data preprocessing, the input data includes 30 · (f +1)
features. Since we wanted to correctly distinguish medication
intake regardless of what wrist the study subject wore in
other activities, we combined the labels of activities 1) and
2) into a single class ”medication intake”.

TABLE I: Information of subjects who participated in the
experiment.

Dominant wrist Wrist wearing a watch on

Subject 1 Right Left
Subject 2 Right Right
Subject 3 Right Right
Subject 4 Right Left
Subject 5 Right Right
Subject 6 Right Right

B. Results

We applied the developed algorithm with different bin
sizes (f). Figure 3 visualizes different bin sizes and its
corresponding recall and precision.

Precision =
tp

tp + fp
, Recall =

tp
tp + fn

(2)

At the bin size of 40, we achieved a recall of 1.00 and
precision of 0.80 for the medication intake class (Figure 3)
and the model was built within 161.15 seconds (Figure 5).
The average precision and recall across all activities were
0.91 and 0.93 respectively.
Figure 4 shows the confusion matrix on a test data set. The
experiment results indicate that most activities are well clas-
sified including drinking bottled water which includes similar
sequences of activities such as opening a cap, drinking water
out of a bottle and closing the cap.

IV. CONCLUSION

In this work, we developed a medication adherence mon-
itoring system using a smartwatch, stored data in AWS S3,
preprocessed the data and applied a random forest algorithm
using Apache Spark. The experiment results showed a recall
of 1.00 and a precision of 0.80 with a bin size (f) of 40 using
1,230 features. While few activities with a higher variation in
sensor readings were misclassified, texting, an activity with
a low variation, was not misclassified.
In addition to the biosensors, the smartwatch is equipped

(a) Accelerometer data

(b) Gyroscope data

Fig. 2: Collected timeseries high frequency data stream
during medication intake.

Fig. 3: Precision and recall of medication intake with differ-
ent bin sizes (f).

Fig. 4: Confusion matrix, where f = 40.

Fig. 5: Run-time (seconds) to build a model with different
bin size (f) .

with an NFC which establishes communication and ex-
changes data between two electronic devices within close
proximity (about 10 cm). While our study results show
that the applied algorithm could sometimes misclassify data,
perhaps applying NFC sensors could enhance study results.

REFERENCES

[1] A. O. Iuga and M. J. McGuire, “Adherence and health care costs,”
Risk management and healthcare policy, vol. 7, p. 35, 2014.

[2] C. Pop-Eleches, H. Thirumurthy, J. Habyarimana, J. Zivin, M. Gold-
stein, D. de Walque, L. MacKeen, J. Haberer, S. Kimaiyo, J. Sidle
et al., “Mobile phone technologies improve adherence to antiretroviral
treatment in a resource-limited setting: a randomized controlled trial
of text message reminders.” AIDS (London, England), vol. 25, no. 6,
p. 825, 2011.

[3] M.-k. Suh, T. Moin, J. Woodbridge, M. Lan, H. Ghasemzadeh, A. Bui,
S. Ahmadi, and M. Sarrafzadeh, “Dynamic self-adaptive remote health
monitoring system for diabetics,” in Engineering in Medicine and
Biology Society (EMBC), 2012 Annual International Conference of
the IEEE. IEEE, 2012, pp. 2223–2226.

[4] K. Dorman, M. Yahyanejad, A. Nahapetian, M.-k. Suh, M. Sar-
rafzadeh, W. McCarthy, and W. Kaiser, “Nutrition monitor: a food
purchase and consumption monitoring mobile system,” in Interna-
tional Conference on Mobile Computing, Applications, and Services.
Springer, 2009, pp. 1–11.

[5] C. Chen, N. Kehtarnavaz, and R. Jafari, “A medication adherence
monitoring system for pill bottles based on a wearable inertial sensor,”
in Engineering in Medicine and Biology Society (EMBC), 2014 36th
Annual International Conference of the IEEE. IEEE, 2014, pp. 4983–
4986.

[6] F. M. Hasanuzzaman, X. Yang, Y. Tian, Q. Liu, and E. Capezuti,
“Monitoring activity of taking medicine by incorporating rfid and
video analysis,” Network Modeling Analysis in Health Informatics and
Bioinformatics, vol. 2, no. 2, pp. 61–70, 2013.

[7] H. Kalantarian, N. Alshurafa, and M. Sarrafzadeh, “Detection of
gestures associated with medication adherence using smartwatch-based
inertial sensors,” IEEE Sensors Journal, vol. 16, no. 4, pp. 1054–1061,
2016.

[8] A. Spark, “Apache spark: Lightning-fast cluster computing,” 2016.
[Online]. Available: http://spark.apache.org

[9] A. Ho, Step-by-step Android Wear Application Development. Amazon
Digital Services, 2015.

[10] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:
Relational data processing in spark,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM,
2015, pp. 1383–1394.

[11] A. Liaw, M. Wiener et al., “Classification and regression by random-
forest,” R news, vol. 2, no. 3, pp. 18–22, 2002.

http://spark.apache.org

