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Abstract—As the amount data from IoT devices on transporta-
tion systems increases, developing a robust pipeline to stream,
store and process data became critical. In this study, We explore
prediction accuracy and computational performance of various
supervised and unsupervised algorithms perform on distributed
systems for developing a smart transportation data pipeline.
Using a subset of New York City Taxi & Limousine Commission
data, we evaluate Logistic Regression, Random Forrest Regres-
sors and Classifiers, Principal Component Analysis, and Gradient
Boosted Regression and Classification Tree machine learning
techniques on a commodity computer as well as on a distributed
system. Employing Amazon S3, EC2 and EMR, MongoDB, and
Spark, we identify the conditions—data size and algorithm—
under which the performance of distributed systems excel.

Index Terms—Distributed computing, Distributed information
systems, Machine learning, Smart transportation

I. INTRODUCTION

Large cities in the United States such as Los Angeles and
New York City suffer from chronic traffic congestion. In 2017,
drivers in New York—the third most congested city in the
world—spent an average of 91 hours in traffic. Considering
travel time, operating costs, excess fuel, and lost productivity,
the costs associated with traffic congestion in New York City
alone are estimated at $20 billion annually [1]. In an effort
to mitigate some of the effects of congestion, various studies
have evaluated transportation data to analyze travel patterns,
providing real-time predictions for drivers and passengers
[2][3].

There have been significant investments in Internet of
Things (IoT) devices and systems aimed at improving trans-
portation systems, including traffic monitoring, live location
streaming, and vehicle performance monitoring. With the re-
cent expansion of rideshare services and autonomous vehicles,
the volume of traffic data has increased rapidly. Verizon
recently announced 40% growth in IoT network connections
for transportation systems in 2017 [4]. Developing a robust
pipeline to stream, store and analyze real-time data is a critical
piece of infrastructure for IoT devices.

In order to reliably ingest and process transportation data
from multiple users in real-time, it is important to schedule and
process data efficiently, while avoiding system failures. Dis-
tributed systems utilize many commodity computers connected
via network, providing high-quality aggregate performance.
This is achieved by dividing a task into multiple smaller tasks

and processing each task on one or multiple machines. While
an individual high-performance machine also provides efficient
data processing and task scheduling, it is more susceptible to
failure [5]. Distributed systems are not only cost-efficient and
fast, but are also reliable. By replicating data across multiple
nodes, the system is resilient against the failure of a single
node.

As transportation data is collected from heterogeneous
sources that are likely to evolve over time, highly-flexible
NoSQL (Not Only SQL) database solutions are becoming
more prominent [6]. Moreover, NoSQL databases are designed
to run on a cluster in an effort to maximize throughput.
MongoDB is one of the most popular NoSQL databases [7][8].

As the volume of data increases, MongoDB outperforms re-
lational databases for data insertion, update, deletion and other
operations. For instance, inserting 1,000,000 records takes
57,871 milliseconds for MongoDB, and takes 882,078 mil-
liseconds for an Oracle database. Deleting 1,000,000 records
only takes 1 millisecond for MongoDB, and takes 38,079 mil-
liseconds for an Oracle database [9]. Employing MongoDB,
we can achieve time and cost efficiencies for storing and
querying large volumes of transportation data.

The open-source Apache Spark [10] processing engine
provides a comprehensive framework to perform the afore-
mentioned tasks in a distributed setting, i.e., across a number
of different machines. Spark provides an interface via Python,
R, Scala or Java to program parallelized clusters with fault
tolerance. The architecture is such that a central master node
distributes data and individual processes to a family of worker
nodes. With large datasets, this parallelization provides in-
credible performance boosts by concurrently running tasks.
Included within the Spark stack are functionalities to perform
SQL-style database queries, employ built-in machine learning
pipelines and process streaming data.

This research examines how Spark performance responds to
varying both the type of machine learning algorithm employed
and the size of dataset, with the objective of determining the
conditions under which Spark excels. We seek to provide a
benchmark for those seeking to balance algorithmic precision
and data size, and identifying the conditions under which it
becomes beneficial to implement distributed systems for ma-
chine learning (ML) algorithms. We compare the performance
of distributed systems with similar processes being run on a
single laptop with PySpark, Pandas and Scikit-learn, which are∗ These authors contributed equally.



a Spark Python API, a data manipulation and analysis library,
and a machine learning library for Python, respectively.

We use New York City Taxi data [11], a publicly available
dataset that details every trip taken within NYC. As this dataset
was the subject of a 2017 Kaggle Competition [12], we have
the added benefit of comparing our results with top Kaggle
competitors, whose results often considered state of the art.

II. BACKGROUND

Hadoop’s MapReduce software, introduced in 2004, was
the first to implement distributed techniques in an attempt to
speed up large scale data analysis [13]. MapReduce splits data
into smaller chunks across different nodes, and subsequently
maps and processes a task, e.g., filtering and sorting, in
parallel. The output of a mapped task becomes the input of
a reduce operation, which performs a summary operation.
This highly-effective model allows users to design programs
with successive Map and Reduce operations, and is still in
production use today.

Spark was designed in UC Berkeley’s AMPLab in 2009
and open-sourced in 2010. Although Spark adopts MapRe-
duce concepts, it runs up to 100 times faster than Hadoop
MapReduce, utilizing in-memory computing and an advanced
task-execution engine [14]. Spark also has built-in libraries
that allow for efficient iterative computation. Included with
version 0.8 in 2013, MLLib was the first library within Spark
to support Machine Learning features. The MLLib API worked
with Sparks native Resilient Distributed Datasets (RDD)—
a fundamental data structure of Spark—and has since been
placed into maintenance in favor of Spark ML [15]. Although
MLLib currently provides greater functionality, Spark ML
provides a more user-friendly API with objects stored as
DataFrames, a spreadsheet-like collection of data organized in
columns. We employ Spark ML for all subsequent analysis.

There is a paucity of academic research that benchmarks
Spark ML performance, either evaluating the library itself
under varying conditions, or in comparison to MLLib. A
number of researchers from DataBricks authored a 2016
paper providing an academic introduction to MLLib [16],
and discussing its performance across versions. This research
provides a similarly extensive look at Spark ML performance,
examining results generated when running Spark ML on
a specific dataset. The interested reader is directed to the
following references, which provide a deep analysis of this
data:

• Fischer-Baum [17] – The authors analyzed the New York
City Taxi & Limousine Commission (NYC TLC) data
from January 2009 through June 2015, as well as Uber
data during that same period, concluding Uber is taking
millions of rides away from taxis in Manhattan.

• Schneider [18] – The author analyzed pickup and drop-
off locations using NYC taxi and Uber data, containing
19 million rides for the periods from April to September
2014 and from January to June 2015. Highly insightful
visualizations are provided, depicting customer demand
and routing.

• Daulton’s Harvard Data Science Project [19] – The author
used Spark to pre-process data, Pandas and Scikit-learn
to apply Machine Learning techniques to predict drop-off
locations, and generated several visualizations.

III. SYSTEM OVERVIEW

A. System Workflow

For this research, the data science pipeline was designed
around scalability, cloud resources and distributed methods.
Technologies were selected to build an ingestion and predic-
tion system for taxi data from multiple cities and resources.
We therefore selected Amazon Web Services (AWS) as the
primary platform to host storage, data extraction, transform
and load (ETL) processes and machine learning tasks. The
exact hardware specifications of the database and testing
cluster are noted in Figure 1 1.

1) Data Storage: Data scraped using APIs and Selenium
was stored in Amazon’s Simple Storage Service (S3). S3
was selected for its replicated hosting in multiple data-
centers, as well as ease of interoperability with Amazon’s
cloud servers [20].

2) Data Management: When manipulating and analyzing
taxi data from varied geographic locations, data for-
mat consistency is not guaranteed. Although relational
database service (RDS) platforms can be efficiently and
reliably run on a single, high-performance instance, they
often run into difficulties with data heterogeneity and
large volumes of data. We therefore selected MongoDB,
a flexible NoSQL platform, based on its sharding (the
ability to natively and automatically spread data across
an arbitrary number of servers) and replication capa-
bilities. We hosted an AWS EC2 cluster (t2.xlarge
instance) running MongoDB.[21].

3) Data Analysis: Apache Spark is a popular distributed
computing software platform built on Java. Although
similar to Hadoop MapReduce, Spark is optimized to
work in memory, thereby increasing data processing
performance. Spark also includes its own distributed
versions of popular machine learning algorithms. Spark’s
distributed data processing jobs can be managed by
Spark itself, or by other cluster managers. We chose to
use YARN (Yet Another Resource Negotiator) as our
cluster manager, primarily for it’s ease of integration with
AWS EMR (Elastic Map Reduce) services [22]. EMR
automatically provisions hardware resources, installs the
required software and provides an accessible monitoring
dashboard. For this research, we ran three m4.2xlarge
instances, with one instance set up as a master and
the remaining two as slaves. For comparison, additional
experiments were performed one standard commercial
laptop with SSD storage, 8GB RAM, and 2.9 GHZ Intel
Core i5.

B. Algorithms

Spark ML—the Spark machine learning library—only sup-
ports algorithms whose performance improves when dis-



Fig. 1: System workflow

tributed across a cluster. The implication of this carefully
circumscribed algorithmic selection is that some of the most
popular machine learning algorithms are not implemented. Al-
gorithms that tend to work poorly within the distributed frame-
work rely on boosting techniques, i.e., iteratively combining
weak learners to form a single stronger learner. This process
requires a large amount of data-shuffling between individual
nodes in a cluster, which is detrimental to performance. In
contrast, bagging is a technique where learners are constructed
independently and results averaged. This independent nature
allows several learners to be trained simultaneously across dif-
ferent nodes within the cluster, improving overall performance.

In light of this, we conducted our analysis on a broad
spectrum of supervised and unsupervised learning techniques,
including Random Forest Regressors, Random Forest Classi-
fiers and Principal Component Analysis (PCA). To establish
a baseline for comparison, we also tested Logistic Regression
and K-means clustering algorithms, which are less compu-
tationally expensive than the tree ensembles of a Random
Forest, allowing us to accurately characterize the additional
efficiencies provided by a distributed setting.

1) Random Forests: A Random Forest is an ensemble of
decision trees, where the output is either a mean prediction
(regression setting) or the mode of the classes (classification
setting) of the constituent trees. Each individual tree is exposed
to a (potentially bootstrapped) subset of the rows and columns
and consists of a series of binary splits that look to optimize
the loss function. This inherent randomness within the trees
avoids overfitting issues complicit with deterministic decision
trees [23]. The compartmentalized nature of the algorithm with

independent trees is especially well-suited to the distributed
framework, and is therefore an excellent candidate for this
research.

Random Forests have become an increasingly popular tech-
nique that has the added benefit of requiring a minimal amount
of architecture and hyper-parameter tuning, making them
relatively easy to train on a dataset. Tree depth is an important
hyper-parameter of a random forest algorithm, which we tune
and evaluate in this research. Although increasing tree depth
improves a model’s predictive accuracy, it requires a longer
training time. Moreover, it may cause overfitting, a scenario
where the model is overly sensitive to training data and
insufficiently sensitive to test data. Spark ML’s API provides
a method to specify the maximal depth of any individual
tree within the forest, allowing us to analyze the relationship
between tree depth and the size of data used to train the
random forest.

Another benefit of using Random Forests is ease of in-
terpretability. We can easily quantify the feature importance
in any model by observing the effect that randomizing each
feature has on model prediction quality. We explore this facet
by testing our model with questions to which we already know
the answer, and cross-reference our results with the answers
we know are correct. Additional details of this validation
approach follow in the appropriate subsections.

a) Random Forest Regression: Using a previous Kaggle
competition as our guide [12], we use Random Forest Re-
gressors to predict trip duration from the remaining features.
Although this analysis is conducted under mildly different
conditions to those who competed in the Kaggle competition,



we demonstrate that our algorithms are performing at a level
comparable to the state of the art.

b) Random Forest Classification: We examine a clas-
sification problem by attempting to predict the type of taxi
used on a given trip based on the features of the trip. This
is in many ways a trivial problem: New Yorkers will inform
you that green taxis only pick up passengers from outer
boroughs, whereas yellow taxis can pick up passengers from
any location, including Manhattan. One can imagine that pick-
up location alone would act as a very strong predictor of
the color. We therefore use this problem to evaluate how the
accuracy and feature importance of our predictions change
with the size of data evaluated in a Random Forest Classifier.

2) Logistic Regression: Traditional Logistic Regression is a
binomial or multinomial classification algorithm [24]. Logistic
Regression minimizes, through gradient descent, a linear com-
bination of our input features when passed through a logit
function [25]. Although Logistic Regression is a traditional
statistical classification method developed in the 1950s, it
remains highly utilized and will serve as a a baseline for
the aforementioned taxi color-prediction classification problem
solved with a Random Forest Classifier.

3) K-means Clustering: Perhaps the most popular clus-
tering algorithm, K-means clustering seeks to partition n
observations into K distinct clusters. After a random cluster
initialization, the algorithm iteratively assigns each point to the
closest centroid of existing clusters [26]. We did not generate
particularly strong results from the methodology given the
size and density of the dataset. Rather, we examined how the
computational time and distribution of nodes in each cluster
changes as the the size of the dataset is varied.

4) Principal Component Analysis: Principal Component
Analysis (PCA) is a tool primarily used for exploratory data
analysis and feature engineering. PCA seeks to reduce the
dimensionality of a large dataset by easily extracting and
identifying salient features into a subset of independent linear
combinations. In finding each principal component, the algo-
rithm selects a new axis where variance is maximized [27].

5) Gradient Boosted Trees for Regression / Classification:
Gradient Boosted Trees are similar to their Random Forest
counterparts. They benefit from a collection of decision trees,
subsequently making a prediction based on the weighted
scoring from each of those trees [28]. The primary difference
in Gradient Boosted Trees is that the first tree is used to make
a prediction, and, once evaluated, an additional tree is added
such that it minimizes error, i.e., minimizes the loss of the
first tree. Trees are added, one at a time, each minimizing the
loss of the preceding tree, until a robust model is developed.
As trees are added sequentially and not in parallel—owing
to the dependency of earlier tree predictions—this reduces
the performance benefit of distributed computing. For our

purposes, Gradient Boosted Tree Regressors and Classifiers
were tested on smaller datasets to benchmark the processing
time along with the accuracy.

IV. EXPERIMENT OUTPUT

A. Data

The New York City Taxi & Limousine Commission (TLC)
publishes monthly data that records select features of every
recorded journey within the city [11]. The data is segmented
into Yellow taxis, Green taxis and contains fields such as pick-
up and drop-off locations, trip times, trip distances, payment
types and number of passengers. We additionally supple-
mented the existing data with Manhattan weather conditions,
obtained from Weather Underground using stylized code [29].

In our research, we selected a subset of 51 million observa-
tions, collected between January and May of 2017. For Yellow
and Green taxis, the size of monthly data was 850MB and
90MB, respectively.

As our objective was to benchmark performance rather than
achieve marginal gains in prediction accuracy, we conducted
minimal feature engineering, although greater attention to
detail in this area would almost certainly improve predictive
performance. We did, however, parse the dates to extract day
of week, day of month, month and year information. We also
removed all observations with trip durations that exceeded two
hours.

B. Results

The Root Mean Squared Error (RMSE) is a typical metric
by which predictions are evaluated, computed as the root of
the squared sum of distances of predicted and true values. For
the k-th record, the error in predicting taxi route distance in
miles is calculated. Then all errors over n total number of
records is averaged and squared rooted to calculate RMSE.
(see Equation 1).

RMSE =

√√√√ 1

n

n∑
k=1

(predictedk − truek)2 (1)

Random Forest Regressor results compare well with Kaggle
competition winners. When using a Random Forest with 2
million observations, we obtain a RMSE on the validation set
of 0.22, which is comparable with Kaggle’s winning RMSE
0.29 with a training set of 1.5 million rows. Random Forest
Classifiers took up to 3 minutes to train, and the Random
Forest Regressors took up to 6 minutes to train, with maximal
tree depth parameters less than 18 (Figure 2).

System Architecture: Launching a Spark cluster is not
an efficient architecture for small datasets, owing to the
additional computational cost of running a distributed system.
Our experiments demonstrate that one does not begin to benefit
from reduced training time of Random Forests until the dataset
consists of at least 1 million rows (Figure 3). At this point,



Fig. 2: Random Forest training times varying tree depth.

however, it quickly becomes infeasible to train the model
on a single laptop with Pandas and Scikit-learn. Training a
Random Forest with Pandas and Scikit-learn on 3 million
rows generates memory errors, therefore direct comparisons
of training times are not possible for large datasets.

The Spark cluster, however, is capable of dealing with
datasets of any size; one is always able to increase the memory
of individual nodes and/or increase the total number of nodes
to distribute computational load. There is no theoretical limit
to the improvements in training times you can achieve from
scaling the cluster. The only true restriction on computational
power is the need to shuffle data and establish worker nodes.

Under all test conditions in our experiments, there existed
none which it was optimal to run PySpark on a single laptop.
The overhead computational costs associated with parallelizing
data across the laptop cores and subsequently shuffling it are
far greater than running the optimized Scikit-learn Random
Forest algorithm. The PySpark setup also quickly runs into
memory errors, crashing with datasets larger than 100k rows.

Algorithmic Comparisons: When testing supervised
machine-learning methods (Random Forest, Logistic Regres-
sion), we observed spikes in training times (Figure 4). This
is attributed to running into a computational ceiling, owing
to both the complexity of the algorithm and the volume of
data. This combination forces Spark to shuffle data or tem-
porarily write to disk, significantly increasing computational
time. Random Forest Regression hit this processing ceiling
at much smaller data sizes, whereas Logistic Regression can
process larger amount of data. This unwanted behavior can
be mitigated with higher-performance nodes or an increasing
the quantity of nodes. As a result, it is recommended that dis-
tributed hardware decisions be informed by an understanding
of an algorithm’s complexity.

When employing a Spark cluster, our experiments demon-
strate that the difference in training times between unsu-
pervised algorithms (K-means and PCA) can be orders of
magnitude faster than Random Forests (Figure 4). Even within
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Fig. 3: Comparison of Random Forest Regressor fit times for
cluster vs PySpark (standalone) vs Pandas.

between classification algorithms, the Logistic Regression
baseline model takes less than half the time to train than
a Random Forest Classifier, and is 10 times faster than a
Gradient Boosted Tree Classifier (Figure 5). The performance
gap between Logistic and Random Forest methods can be
modulated by tuning parameters such as tree depth, sampling
and number of trees. This result suggests one should consider
a more conservative algorithmic approach when operating on
a distributed framework: start with a simple algorithm, and
incrementally increase the algorithmic complexity.

Moreover, the faster Logistic Regression algorithm also
demonstrates superior predictive power to its tree ensembles
counterparts (Figure 5). These results will not generalize to
all problems, but it does highlight the need to be judicious
with modeling choices: complex models will not necessarily
outperform less complex ones. The modeler must choose the
most appropriate model, with considerations for hypothesis,
scope, training time, infrastructure, budget and data.

V. CONCLUSION

The combination of low-cost cloud computing and Spark’s
easy-to-use interface provide a powerful resource for ML
practitioners to create competitive large scale models. For
ML problems such as NYC taxis with large volumes (trips)
and high cardinality (locations), Spark’s scalable throughput



Fig. 4: Comparison of fit times on the cluster for each
algorithm and dataset size.

Fig. 5: Comparison of accuracy and fit times for 3 core
classification algorithms - 100k rows.

enables ML teams to avoid common big data compromises
such as reducing problem scope, widening predictive accu-
racy requirements, or avoiding the application of complex
ML techniques. In addition, Spark’s pre-built ML algorithm
library enables a smooth transition of smaller models into
larger scale production; Spark ML’s data structures, concepts,
and parameters are consistent with other popular python ML
libraries.

Our research concluded that a Spark cluster was unques-
tionably a good choice to run machine learning algorithms at
scale, though this result does come with a number of caveats.
Practitioners must carefully weigh the trade-off between im-
provements in predictive performance and run-time (cost) for
their particular application. With this particular dataset, we
found that not only did increasing the dataset size have a

negligible improvement on our classification accuracy, but also
that using complex tree-ensemble methods did little to improve
results generated from simpler algorithms. In fact, the simpler
Logistic Regression algorithm had a higher accuracy on the
hold-out test set than either of the more complex algorithms.

With this in mind, one has to be careful in choosing their
methods. Data size nor algorithmic complexity will alone max-
imize prediction accuracy. In particular, if a marginal improve-
ments in predictability are not being sought, then a simpler
method—perhaps one that also has greater interpretability—
may be a more appropriate machine learning algorithm.

As the results of this research are based on a single
dataset, it would be instructive to analyze a range of different
datasets—both content and size—to compare runtimes and
predictive performance relative to state of the art results.
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