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Abstract—Electroencephalography (EEG) is a noninvasive
and inexpensive means of monitoring brain activity. Because
of the low-cost, noninvasive nature of EEG, it may be useful
for classification of motor movements when a patient controls
a prosthetic device. However, due to the high velocity nature
of EEG recordings, the data used in such a classification
are often large and may take a long time to process on a
local, non-distributed computer. Here we explore the use of a
distributed computing architecture for storage and processing
of EEG data. We evaluate the classification of EEG recordings
during hand movements. We find that processing these data
on a distributed system results in much faster classification
times (e.g., 726 seconds versus 3925 seconds) without limiting
accuracy (e.g., AUC of 0.85).
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I. INTRODUCTION

The amputee coalition estimates there are 2.1 million
people in the United States who are currently living with
limb loss, and an additional 185,000 individuals require
an amputation each year [1]. Additionally, limb amputation
affects members of the military, with 6,000 amputations
per year in the US Armed Forces [2]. Additionally, there
are approximately 300,000 individuals in the US living with
spinal cord injury impacting upper extremity function, and
12,000 new cases per year [3]. These individuals could
also benefit from BCI control of prostheses. Until recently,
prostheses were controlled by myoelectric signals, that is,
impulses from the muscle tissue neighboring the prosthetic
device [4]. However, myoelectric control provides limited
dexterity and flexibility of control, whereas brain signals
may provide a more precise alternative [4].

Electroencephalography (EEG) uses non-invasive elec-
trodes placed on the scalp of participants to measure signals
generated by local field potentials when neurons in the
cortex are active [5]. EEG has been used to study healthy
individuals, showing, for example, differences in attentional
allocation [6] and working memory [7]. There are significant
advantages to EEG, primarily because it is non-invasive,
(recordings can be performed with electrodes placed on the

head) and has high temporal precision [8], [9]. Here, we
examine a data set comprised of EEG recordings from partic-
ipants performing a motor task [10]. Classification of brain
activity during motor tasks holds promise as a non-invasive,
inexpensive way for patients who use prosthetic hands to
control these devices [11]. Here, we benchmark algorithms
for classifying EEG during motor tasks using distributed
computing architectures. This allows us to examine both
accuracy and temporal performance across algorithms and
architectures.

Because EEG data is collected at a rapid velocity (gener-
ally every 1-4 milliseconds) from multiple sensors the data
quickly becomes large for many computer systems [9]. This
can lead to long processing times. Storing and processing
data in some type of centralized high-performance system
poses a novel way to solve this issue. It could, however,
present difficulties when data streams come from multiple
organizations if the database system suffers read and write
reliability issues (e.g., communication slow-down or system
failure). Distributed database systems solve reliability issues
by splitting data into multiple shards and recovering data
from replicated data when there is a failure [12]. This
allows for processing the EEG data stream in a relatively
short amount of time for rapid classification of intended
movement. Distributed computing efficiently completes jobs
by distributing tasks to multiple processors and planning and
running processes concurrently. Previous work has explored
using Hadoop [13] and Beowulf [14]. Our approach uses the
modern and popular Spark architecture, which is accessible
through Amazon Web Services.

The rest of the paper is organized as follows: Section 2
contains a system overview, Section 3 contains descriptions
of the processing algorithms, section for presents the results
we obtained, and section 5 concludes with a discussion of
our findings.

II. SYSTEM OVERVIEW

To develop a scalable system that stores and processes
high frequency EEG data, we stored data in a schemaless
distributed database system and processed data using dis-
tributed computing. In this study, we used Amazon Web
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Figure 1. Data Pipeline

Service Simple Storage Service (AWS S3), MongoDB, a
document database, and Apache Spark, a distributed cluster-
computing framework for data storage, management and
processing respectively (Figure 1).

AWS S3 is a cloud storage system, adopting a “pay-as-
you-go” charging model, offering limitless storage capacity.
AWS S3 was selected for its replicated hosting in multiple
data-centers that enables 99.99% data availability and low
data access latency. S3 also provides ease of interoperability
with other AWS cloud services including Elastic Compute
Cloud (EC2) and Elastic MapReduce (EMR) [15].

MongoDB stores data without restricting to have either
constant or fixed schema, which suits datasets from various
institutes that may collect data in a different format or
use a different numbers of channels. In addition, unlike
traditional database management systems, MongoDB is built
as a distributed data storage which can handle a large volume
of high frequency data. By storing data in different partitions
and maintaining its replica sets, a database management
system is scalable while reliable and free from single point
failure [16]. For MongoDB, we launched two nodes for
dividing the entire dataset into two partitions. We had addi-
tional instances for saving a replica set of each partition’s
meta data and configurations. When the primary node fails or
is not available, MongoDB will choose one of the secondary
nodes as a new primary node and replicated data in it
will be provided to the user. MongoDB also maintains a
configuration server and its replica set to store state and
organization of data, and data partitions and replications.
Data partitions, replications and configuration servers were
all launched on AWS EC2.

Pre-processing was completed locally in order to use the
highly regarded MNE package [17]. Also, computation of
these linear features was not sufficiently time-intensive to
be a limiting factor in the processing pipeline, even when
computed locally.

For machine learning model development and application,
we chose Apache Spark, which uses traditional MapReduce

Figure 2. EEG Signal for Subject 1 where event type is Replace following
60 Hz notch filter.

concepts. Hadoop MapReduce is a programming paradigm
for processing a large volume of data in parallel by dividing
a task into a set of subtasks, and processing them in parallel
on a cluster of multiple machines. For MapReduce, users
design map and reduce steps, where a map function, such
as filtering, processes key-value pairs in parallel. A reduce
function takes the outputs of the map function as input
from multiple machines and executes a summary operation,
returning a single answer to a driver [18]. Apache Spark
enhanced efficiency by using its directed acyclic graph-based
job scheduling and in-memory data processing [19], showing
100 times faster than Hadoop MapReduce when processing
data in memory. Apache Spark is a highly efficient model
and is used in both research and industry [20], [21], [22].
For Apache Spark, we launched instances on AWS EMR
that provides a fully managed Hadoop framework hosted on
AWS EC2 instances [23]. In the launched EMR cluster, a
master node distributes tasks to slave nodes for processing
data in parallel. EMR automatically provisions hardware
resources, installs the required software and provides an
accessible monitoring dashboard [24].

III. ALGORITHMS

A. Feature Processing

The EEG data were originally presented as the raw
signal from the 32 channels of the standard 10-20 recording
montage, the data were pre-processed by band-pass filtering
from 0.016-1,000 Hz and down-sampled to 500 Hz. We
further applied a 60 Hz Butterworth notch filter to remove
electrical noise [8] (Fig. 2). We chose to decompose the
signal into 4 low frequency bands and 1 mid-frequency band,
as this has shown promise in previous work decoding brain
signals associated with motor tasks [25]. We decomposed
these frequency bands into four common spatial components
that may be associated with different sources in the brain,
this allows us to preserve information about local variations
in the frequency bands while reducing data more than
keeping five bands at 32 channels [26]. This method has
been shown to be robust in single-trial analyses [27] and



multi-class classification problems [28]. We processed the
data into these 20 features (5 filters by 4 sources) using the
MNE package [17] for Python [29]. Each epoch was binned
beginning 200 ms before event-onset to 800 ms following
event onset (Algorithm 1).

Algorithm 1 Feature Engineering
Data: EEG Data

Function mne raw object(filename, read events=TRUE)
is

Get data file, channel names, montage from MNE
if read event = TRUE then

Get events file, event names
Concatenate event file and data file

end
Create and populate MNE info structure

return RawArray(data, MNE info structure)
end

Function create epochs() is
for each subject do

for filename of the subject do
Append mne raw object(filename) to raw

end
Pick EEG signal using raw info

Filter data for low- and mid-frequency bands using
Butterworth filters
Initialize list y for class for each epoch
for each event i do

Create epoch i for event i where time = -0.2 to
0.8
Extend y for class for each epoch

end
Train Common Spatial Pattern (CSP)

Create training features using CSP filter and rectify
signals
Concatenate training features
Get labels from raw data
Concatenate labels and features and save to disk

end
end

def main:
Initialize Butterworth filters

create epochs()

B. Modelling Approach

We aimed to classify the type of hand movement from the
extracted features. The type of hand movement fell into six
different possible classes: Hand Start (when the hand begins
moving), First Digit Touch (when the hand first contacts the
object to be grasped), Both Start Load Phase (when the hand
begins to support the weight of the object), LiftOff (when

upward movement begins), Replace (when the object is
returned to the surface), and Both Released (when the thumb
and fingers are no longer in contact with the object). Notably,
these six classes were not mutually exclusive. This means
that the hand movement could belong to two categories,
i.e., a hand movement could be both HandStart and LiftOff.
To deal with this, we built six different models, one for
each label, and then aggregated the results into a tuple of
six binary outcomes. By building a model for each motion
class separately, we treated classes as independent events,
which they are definitely not. An alternative approach would
have been to incorporate all possible combinations of the
six labels into one class with 64 (two to the power of six)
possible labels. The problem with this method, is several of
those 64 labels are not going to be represented at all (e.g.,
one cannot simultaneous pick up and set down the object).
Thus, we felt that aggregating across binary outcomes would
better mitigate bias from having too many zeros in the
outcome array.

We trained our data using an 80%, 20% train/test split on
participant.

We test four different model types: Logistic Regression
Classifier [30], Random Forest Classifier [31], Linear Sup-
port Vector Machine Classifier [32], and Gradient Boosted
Trees [33].

The logistic regression classifier (LR) makes a soft predic-
tion by fitting a sigmoid function to the relationship between
the predictive features and the outcome (movement type).
The output of the logistic regression is an odds ratio for
each movement class. The hard prediction was movement
class with the highest odds ratio. [30]

The random forest classifier (RF) is an ensemble model
of decision trees, where each decision tree makes recursive
binary partitions of feature space and test observations
falling in a leaf node are predicted to be the majority class of
the leaf. Further, to avoid overly correlated trees, each tree
is built on a subset of the predictive features (for further
discussion see [31]).

The linear support vector machine classifier (SVC) works
by iteratively identifying the hyperplane which best sepa-
rates classes of data. For our problem, each class was mod-
elled in a one versus all fashion to determine the hyperplane
with the largest margin between classes by optimizing for
lowest hinge loss. [32]

Finally, gradient boosted trees (GBT) are similar to RF in
that they take the vote of an ensemble of trees, however trees
are trained iteratively on the residuals from the previous tree.
Thus, subsequent trees aim to reduce the error for the points
where the previous trees made poor predictions, in our case
indicated by higher log loss. [33]

For each method we tested a small set of hyper-parameters
using a grid-search and the best hyper-parameters were used
to calculate our final results.



IV. EXPERIMENT OUTPUT

A. Data

Our dataset [10] consists of EEG data from 12 different
participants. Each participant completed 10 trials, for a total
of 120 trials. The stimulus channels were preprocessed into
six binary movement columns, where a 1 represents that
movement being executed, and a 0 represents the lack of that
specific movement. During each trial the weight or texture
of the object used to complete the motor tasks changed,
in order to allow classification of the same six movements
under different conditions. This is important because if the
classification were used to control a prosthetic hand it would
need to correctly classify these motions across a wide variety
of objects and environments.

B. Experiment Setup

1) Distributed Database
In this work, we set up MongoDB on 10 EC2 instances

with 1 GB Memory and 6 CPU cores. We launched one
instance for service routing, three for configuration meta data
storage where one was a primary and two was a replica. In
addition, we launched three instances for the first shard and
another three for the second shard. For each shard, one was
a primary node and the other two were replication nodes.
Setting up three instances helps satisfy a read and write
quorum in case read and write inconsistency happens in a
distributed system [34].

2) Distributed Processing
For processing data in parallel using Apache Spark, we

used EMR with a master and multiple slave nodes and
compare with a local machine (Table I).

Table I
INSTANCE SPECIFICATIONS FOR DISTRIBUTED DATA PROCESSING

Master SlaveCluster
Configuration CPU

Cores
Memory
(Gb)

CPU
Cores

Memory
(Gb)

Cluster 1
1 master, 4 slaves 8 32 4 16

Cluster 2
1 master, 3 slaves 8 32 8 32

Local 4 6 - -

C. Results

In order to benchmark these models, we used the metric
area under the receiver operating characteristic curve (Area
Under the Curve: AUC). The AUC is useful in a multiclass
classification problem because higher values represent more
true positives without a higher rate of false positives. After
fitting and transforming our models with the Spark ML
package, we found that the Random Forest model outper-
formed the others, with an average AUC score of 0.85. Next
was Gradient Boosted Trees, (AUC of 0.83) followed by
Logistic Regression (AUC of 0.57) and Linear SVC (AUC

Figure 3. Average AUC for each model and architecture.

Figure 4. Average time for each model and architecture.

of 0.52) (Fig. 3). Both of our clusters were much faster
than running the analysis locally, and Cluster 1 was slightly
faster than Cluster 2 (Fig. 4). In addition to being the highest
accuracy, the Random Forest model was the second fastest
(Cluster 1: 726 seconds), surpassed only by the Logistic
Regression model (Cluster 1: 150 seconds). In both cases
the speed was significantly improved on the cluster versus
a non-distributed (local) computer, where the two models
completed in 3952 seconds (1.09 hours) and 2400 seconds
(40 minutes), respectively.

V. CONCLUSION

A. Discussion

Regardless of the modelling algorithm we used running
the training on a cluster rather than a local machine was
far faster. Cluster 1 was faster than Cluster 2, and because
of that we recommend more smaller slaves as opposed to
fewer larger slaves when designing a cluster for this type of



analysis. An additional advantage to this is that Cluster 1,
in addition to performing faster, was also cheaper at $0.28
per hour (while Cluster 2 cost $0.48 per hour).

Random forest had the highest accuracy, with a nearly
150% improvement over logistic regression. While logistic
regression was the fastest, taking 20% as long on Cluster
1, 47% as long on Cluster 2, and 61% as long as random
forest when run locally. Despite this faster rate of training
time, we advocate for the use of random forest models in
classifying EEG data. Patients will place a high value on
their prosthesis performing the action they want it to, so the
additional training time would pay-off in valuable accuracy.

In addition to showing the highest accuracy, in examining
the AUC scores for random forest we see more variability
than in our other models 3. This is likely because the
maximum depth for the trees in the random forest we arrived
at was 10. Generally random forest uses deep trees to
decrease the variance of the model, future research could
examine the use of deeper trees to reduce this variance,
though this hyper-parameter was likely successful in our
grid-search because the shallower trees reduced over-fitting.

B. Future Directions

One approach that could improve our model would be
to train parameters for each participant, rather than for the
group as a whole. The model may perform better if we kept
the ID as a feature, because the human brain is quite different
across person to person [35]. This approach, however, would
reduce the generalizability of our model to new participants.
By building a more general model new patients would likely
receive higher accuracy even without their personal EEG
recordings being incorporated into training data. Considering
our data was split on participant we demonstrate how
powerful this machine learning approach is to classifying
movement of new individuals.

Further, we could have stacked multiple models. Although
we note that while the stacking approach improves accuracy
[36], it likely greatly slows down the time needed to train
the model, and more importantly, classify actions taken by
a patient using a prosthesis. While training time can be a
little longer, if it takes a long time to classify actions with
a trained model this will impact the patient’s quality of life.
Most patients will not want to wait for every action they
take to be classified, and would prefer a more responsive
prosthesis.

Finally, we may have been able to improve our model
further by using more advanced methods of hyper-parameter
tuning such as Bayesian optimization.

C. Summary

Overall, regardless of the machine learning model chosen,
these findings are important to patient outcomes. Being able
to classify motor intent from EEG quickly is critical to
patient care, since prostheses (or other treatments) must be

deployed in a timely matter. We urge future research into
EEG classification to use distributed data systems for storage
and analysis, as we have shown this improves processing
time markedly.
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