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Abstract—This research explores the relationship between

daily air quality indicator (AQI) values and the daily intensity

of bike-share ridership in New York City. The authors designed

and deployed a distributed data science framework on which

to process and run Elastic Net, Random Forest Regression, and

Gradient Boosted Regression Trees. Nine gigabytes of CitiBike

ridership data, along with one gigabyte of air quality indicator

(AQI) data were employed. All machine learning algorithms iden-

tified bike-share ridership intensity as either the most important

or the second most important feature in predicting future daily

AQIs. The authors also empirically demonstrated that although a

distributed platform was necessary to ingest and pre-process the

raw 10 gigabytes of data, the actual execution time of all three

machine learning algorithms on cleaned, joined, and aggregated

data was far faster on a local, commodity computer than on its

distributed counterpart.

Index Terms—Distributed computing, Distributed information

systems, Distributed databases, Machine learning, Air pollution,

Air quality, Intelligent transportation systems

I. INTRODUCTION

Air pollution has a well-documented negative impact on the
human respiratory system. A 14-to-16-year mortality follow-
up study of 8,111 adults in six U.S. cities confirmed that there
are statistically significant associations between air pollution
and mortality, causing death from lung cancer and cardiopul-
monary disease [1]. A recent study from Guttikunda also
demonstrated in 2010 that 695,000 premature deaths in India
were caused by continued exposure to air pollutants including
particulate matter (PM) and ozone(O3) [2].

In an effort to improve air quality, both the public and
private sectors have developed regulations and recommenda-
tions: the legislation of vehicle emission standards, stricter
environmental laws, energy conservation policies including
encouraging limited driving, and the planting of vegetation
[3], [4].

Vehicle emissions are a main cause of increased atmospheric
carbon dioxide (CO2), a major air pollutant. Various efforts
to curb CO2 emissions include fuel economy regulations,
technological advances in vehicle emission efficiency, and
developments in electric- and hydrogen-powered vehicles [5].
Many local governments have also redesigned and rebuilt
public spaces to encourage walking, biking, and the use of
public transportation.

A recent study concluded that a 5% increase in walkability
and bikeability can contribute to 6.5% fewer vehicle miles

traveled. This reduction in vehicle miles in turn results in
emissions reductions of both nitric oxides (NOx) and volatile
organic compounds (VOCs) by 5.6% and 5.5% respectively
[6].

A popular way for municipalities to encourage bikeability
is through the introduction of bike-share programs. This free
or low-cost service enables residents to borrow/rent bicycles
from a docking station and, after use, return the bicycle to a
set of designated docking locations. A formalized bike-sharing
system was first introduced to the U.S. in 1994 in Portland,
Oregon. The number of user rides has been increasing by over
25% yearly. Currently, 25 cities in the U.S. have an established
bike-sharing program [7].

Bike sharing has many redeeming qualities, including health
benefits to riders [8], a reduction in automobile congestion
[9], and providing an additional, highly affordable mode of
transportation for those who lack access to other forms of
transportation [10]. Bike-sharing programs can also contribute
to improving air quality in many cities: a rider on a bicycle will
generate 80% less emissions per kilometer than a passenger
car [11].

To date several studies have focused on factors influencing
bike-share usage [12], [13], [14] and its impact on car use
[15]. To our knowledge, there is no study that formalizes
the relationship between bike-share usage and air quality.
Joining daily air quality index (AQI) values with bike-share
usage data from CitiBike—New York’s bike-sharing program,
and the largest bike-sharing service in the United States—
the authors leverage several machine learning and distributed
computing techniques to analyze 10 GB of data, and clearly
demonstrate that the intensity of bike-share usage on a given
day is a strong predictor of daily AQI in major urban areas.
Additionally, the authors develop a robust framework in which
to store and process a large volume of real-time, streaming data
from rapidly expanding bike-share systems. The framework is
sufficiently robust to accommodate growth in air quality data,
as well as Internet of Things (IoT) and wearable device data.

A traditional, non-distributed, single machine environment
is unable to process the voluminous amount of data required
for this type of analysis in an expedient and cost effective
manner. The authors therefore develop and design a scalable
computational framework for storing and managing both bike-
share and air quality data, and efficiently apply machine
learning algorithms, all in an economical computational en-⇤ These authors contributed equally.



vironment.

II. BACKGROUND

A. Cloud computing and Amazon Web Services
Cloud computing provides remote access to data centers

over the Internet, and provides information technology infras-
tructure and management for users to store and process data.
Sharing resources among users and providing maintenance
services for hardware and software, cloud computing is an
economical means by which to manage infrastructure, and has
become a powerful tool for individuals and organizations with
large data storage and intense data processing needs. Cloud
computing services must be easily scalable, offer redundan-
cies, and ensure both data integrity and privacy [16], [17],
[18].

Amazon Web Services (AWS) is the largest public cloud
service, offering data storage, management, computing, and
analytics services, to name but a few [19]. AWS facilitates
the launching of virtual machines (VMs), and allows users
to specify hardware, software, and networking requirements,
including speed and quantity of CPUs/GPUs, storage size
and speed, live memory, operating systems, as well as other
software for web servers and databases. AWS also provides
configuration options with a focus on balancing scalability,
availability, data integrity, and security. Simple Storage Service
(S3) and Elastic Compute Cloud (EC2) are the two most
popular AWS services. S3 offers a unified storage solution, and
EC2 provides remote computing on demand [20], [21]. AWS
Elastic Map Reduce (EMR) provides distributed computing by
launching and coordinating multiple EC2 instances.

B. NoSQL and MongoDB
Owing to the recent increases in available data, traditional

data-management techniques and systems are ill-suited to effi-
ciently process and store large volumes of data. Moreover, tra-
ditional relational database management systems (RDBMSs)
do not support all the data types used in application programs
specifically written in object-oriented languages [22]. As the
volume and data types used and stored by an application
evolve, users require a new database management system
whose schema can similarly evolve [23]. Perhaps most im-
portantly, a scalable database ensures both data integrity and
redundancy. Unfortunately, most existing relational databases
do not offer native mechanisms for data redundancy, nor can
they scale the database beyond a single server [24].

An alternative to the traditional RDBMS, a NoSQL (not
only SQL) database management system runs on a distributed
infrastructure with multiple connected servers. NoSQL sup-
ports various data types, has an evolving schema, and is able
to store data with far fewer structural restrictions than SQL.
NoSQL additionally splits data into multiple shard servers
in order to avoid congestion on a single server, significantly
improving read and write access. In order to ensure the
existence of redundancies and enhance data integrity, each
shard server copies the data into its replica servers using
various configurations. [25] (Figure 1).

MongoDB is the most popular NoSQL variant, storing data
in a JavaScript Object Notation (JSON) format. MongoDB
is also highly flexible, allowing for schemas that can differ
across documents. Moreover, attributes can be created with-
out formally defining or altering a schema. MongoDB also
manages the loading and balancing of data across clusters,
and routes user requests to the correct machines. MongoDB
supports various data types including arrays, regular expres-
sions, embedded documents, and JavaScript code, in addition
to commonly supported data types in other RDBMSs [26].

(a) Data in a Non-Distributed Database

(b) Data Shards and Replica Sets in Distributed NoSQL
Database

Fig. 1: Comparison: Distributed vs. Non-Distributed Databases

C. Distributed Computing and Apache Spark

Distributed computing facilitates the processing of large
volumes of data by utilizing networked computers. Hadoop
MapReduce, introduced by Google, is a programming
paradigm for processing large data sets using distributed
computing. Hadoop MapReduce is composed of two functions,
a map and a reduce function. A map function processes a
key/value pair in parallel to generate a set of intermediate
key/value pairs. A reduce function merges all intermediate
values from the map function associated with the same key
and returns final key/value pairs to a driver [27]. This highly-
effective model allows users to design programs with succes-
sive map and reduce operations, and remains in production
today.

Apache Spark is a variant of MapReduce, improving upon
performance for interactive algorithms by reusing a working



set of data across multiple parallel operations. Spark runs up
to 100 times faster than Hadoop MapReduce, utilizing in-
memory computing and an advanced task-execution engine
[28]. Spark uses resilient distributed datasets (RDDs), which
is an abstract of a read-only collection of objects partitioned
across a set of machines. RDDs can be rebuilt if data is lost or
a system fails and achieves fault tolerance using RDD lineage.
RDD lineage tracks RDD dependency information including
its parents and operations used to create the current RDD in a
directed acyclic graph (DAG). Spark provides built-in machine
learning libraries called MLlib, optimized for iterative machine
learning algorithms [29].

To use Apache Spark, the authors employed AWS Elastic
Map Reduce (EMR) solution. EMR is a cluster of EC2
instances that is optimized for running distributed computing
frameworks including Hadoop MapReduce and Apache Spark.
By default, EMR uses YARN (Yet Another Resource Nego-
tiator) for resource management, which was introduced with
Hadoop, but is also supported by Spark. EMR automatically
provisions hardware resources, installs the required software,
and provides an accessible monitoring dashboard.

III. SYSTEM OVERVIEW

Owing to the large amount of data required for this research,
the data science pipeline was designed around scalability,
cloud resources, and distributed methods. Technologies were
selected to build an ingestion and prediction engine leveraging
data from both CitiBike and air quality index (AQI) data
from the Environmental Protection Agency (EPA). The authors
selected Amazon Web Services (AWS) as the primary platform
to host storage, data extraction, transform and load (ETL)
processes, and machine learning tasks. See Figure 2 for a
visual representation of the complete data pipeline.

A. System Workflow

1) Data & Storage: CitiBike, the provider of New York
City’s bike-sharing program, has a fleet of 12,000 bicycles and
750 unique pick-up/drop-off docking stations across Manhat-
tan, Brooklyn, Queens, and Jersey City. Most CitiBike docking
stations are located within five-minutes (walking) from public
transportation stations, providing a last-mile solution for com-
muters [30], [31]. The authors analyzed ridership data from
2016 to 2018, inclusive.

To analyze the relationship between bike-share ridership
intensity and air quality index (AQI)—an aggregate measure
of air pollution—the authors obtained and merged CitiBike
ridership data with daily pollution emissions data in New York
City.

The data was stored in AWS S3 to achieve high scalability,
redundancy and security. As there is no limit on the amount
of data nor the repository size, S3 is a reliable and cost-
efficient option for storing voluminous data such as AQI and
bike-share information. S3 also provides a high level of ease
of interoperability with other AWS services including EC2,
which was also employed in this research.

2) Data Management and Pre-Processing: The data was
loaded and distributed from S3 into MongoDB, which is
installed across several AWS EC2 instances. MongoDB is
configured to have sharded clusters, where each cluster has
one primary (master), multiple secondary (slave) nodes, a
configuration server cluster with one primary and multiple
secondaries, and a routing server (Figure 2). Configuration
servers store the metadata for a sharded cluster, containing
the state and data organization of each shard. A routing server
takes a query request and determines the location to direct the
request, using metadata stored in the configuration server to
route read and write request to the correct shard. Lastly, data
from MongoDB is loaded to the AWS Elastic Map Reduce
(EMR) cluster, installed with Apache Spark.

B. Algorithms

The authors seek to formally establish the relationship
between bike-share ridership intensity and air quality index
(AQI). Moreover, using historical AQI, ridership data and
machine learning algorithms, the authors aspire to accurately
predict future daily AQI values.

To achieve the aforementioned objectives, the authors have
conducted their analysis on a broad spectrum of supervised
learning techniques, including Elastic Net (regularized linear
regression), Random Forest Regression, and Gradient-Boosted
Regression Trees.

1) Elastic Net: Elastic Net takes the traditional loss func-
tion for linear regression, and adds two additional penalties,
resulting in the following loss function:
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where the data contains n, observations and p� 1 explana-
tory variables, Values for the scaling parameters � and ↵
can vary between 0 and 1 inclusive. The scaling parameter �
controls how much the penalty factors into the loss function,
whereas ↵ controls the trade-off between the L1 (|�j |) and
L2 (�2

j ) penalties. Loosely speaking, increasing both lambda
and alpha result in a model with fewer explanatory variables,
with the most important variables being retained.

2) Random Forest Regression: A Random Forest Regres-
sion is an ensemble of decision trees, where the output is
a mean prediction of the constituent trees. Each individual
tree is exposed to a (potentially bootstrapped) subset of the
observations and variables, and consists of a series of binary
splits that look to optimize the loss function. This inherent
randomness within the trees avoids overfitting, a scenario
where the model is overly sensitive to training data and
insufficiently sensitive to test data. The compartmentalized
nature of the algorithm with independent trees is especially
well-suited to a distributed computing framework.

Random Forests have become an increasingly popular tech-
nique that has the added benefit of requiring a minimal amount
of architecture and hyper-parameter tuning, making them



Fig. 2: System workflow

TABLE I: Air Quality Index Levels

Air Quality Index Levels of Health Concern Numerical Value Meaning

Good 0 to 50 Air quality is considered satisfactory,
and air pollution posse little or no risk.

Moderate 51 to 100

Air quality is acceptable;
however, for some pollutants there may be
a moderate health concern for a very small number of
people who are unusually sensitive to air pollution.

Unhealthy for Sensitive Groups 101 to 150 Members of sensitive groups may experience health effects.
The general public is not likely to be affected.

Unhealthy 151 to 200 Everyone may begin to experience health effects;
members of sensitive groups may experience more serious health effects.

Very Unhealthy 201 to 300 Health alter :
everyone may experience more serious health effects.

Hazardous 301 to 500 Health warnings of emergency conditions.
The entire population is more likely to be affected.

relatively easy to train on a data set. Tree depth is an important
hyper-parameter of a random forest algorithm, which we tune
and evaluate in this research. Although increasing tree depth
improves a model’s predictive accuracy, it requires a longer
training time. Moreover, it may also cause overfitting. Spark’s
MLlib provides a method to specify the maximal depth of any
individual tree within the forest, allowing for the analysis of
the relationship between tree depth and the size of data used
to train the random forest.

Another benefit of using Random Forests is ease of in-
terpretability. We can easily quantify the feature importance
in any model by observing the effect that randomizing each
feature has on model prediction quality.

3) Gradient Boosted Regression Trees: Gradient Boosted
Regression Trees are similar to their Random Forest Regres-
sion counterparts. They benefit from a collection of decision
trees, subsequently making a prediction based on the weighted
scoring from each of those trees. The primary difference in
Gradient Boosted Regression Trees is that the first tree is
used to make a prediction, and, once evaluated, an additional
tree is added such that it minimizes error, i.e., minimizes
the loss of the first tree. Trees are added, one at a time,
each minimizing the loss of the preceding tree, until a robust

model is developed. As trees are added sequentially and not in
parallel—owing to the dependency of earlier predictions—this
reduces the performance benefit of distributed computing.

4) Baseline: A naive prediction using the historical mean
is used to establish a baseline for comparison.

IV. EXPERIMENT OUTPUT

A. Data & Computing Specifications

In an effort to predict AQI based on bike-sharing intensity,
New York City bike-share ridership data for all CitiBike rides
was downloaded from 2016 to 2018 inclusive, with 46,779,707
observations and 10 variables, totalling nine gigabytes. This
data included the following trip information: trip duration,
start time, stop time, date, station ID and longitude/latitude
of the beginning and ending docking stations, user type (24-
hour pass, 3-day pass, or annual member), rider gender, and
year of birth. Bike-ridership data was subsequently aggregated
at the daily level, computing the total rides in a given day for a
given location. Figure 3 depicts the aggregate bike-share data
over all three years.

Daily pollution emissions data in New York City was also
obtained in an effort to reconstruct daily air quality index
(AQI) values, an aggregate measure of air pollution that is



computed in two stages. Firstly, a given monitoring station
reports levels of air pollution for the following pollutants:
ground-level ozone (O3), particulates (PM), sulfur dioxide
(SO2), carbon monoxide (CO), lead (Pb) and nitrogen dioxide
(NO2) [32]. With the levels of each of the aforementioned
pollutants reported, the second step selects the highest reported
level of an individual pollutant as the daily AQI. To ease
interpretation for the public, AQI levels are mapped to six
discrete AQI Levels of Health Concern (see Table I).

Air Quality Index data is not directly available from the
United States Environmental Protection Agency (EPA), how-
ever levels of individual pollutants are readily available [33].
Therefore, to reconstruct daily AQI levels, the authors down-
loaded the daily pollution levels for CO, Pb, NO2, O3, PM10,
PM2.5, SO2 across all proximal New York City pollution
monitoring stations. The AQI was subsequently computed
by selecting the maximal pollution level across all of the
aforementioned pollutants. This resulted in a one gigabyte data
set that includes: date, monitoring site ID, longitude/latitude,
and AQI. Figure 4 depicts the AQI levels for New York
City from 2016–2018. Yearly correlation values between mean
monthly AQI and total bike-share ridership were -0.788, -0.479
and -0.333 for 2016, 2017 and 2018, respectively.

The data was subsequently joined and merged into a final
data set that contained 1,095 rows (365 days * 3 years) and
five features, outlined in Table II. A feature vector of a given
day’s ride count, the previous day’s AQI, and the seasonal
indicator were calculated, aggregated, and created to be used
as inputs to various machine learning algorithms.

TABLE II: Machine Learning Features

Feature Definition

1 Date (mm/dd/yyyy)
2 Total number of bike-sharing rides on that day
3 Previous day’s AQI
4 Seasonal Indicator 2 {Fall, Winter, Spring, Summer}
5 Current day’s AQI

Although the final data used as input to the machine learning
models is of a trivial size, the manipulation of the original 10
gigabytes of data (9 GB CitiBike + 1 GB AQI) required a
distributed computing framework. The specification of EC2
and EMR clusters of MongoDB and Apache Spark are given
in Table III and Table IV, respectively.

TABLE III: AWS EC2 MongoDB Specifications

Role EC2 Type CPUs Memory Disk

Shard
(2 shards with a primary
and two secondaries)

t3.large 2 8 GB 16 GB

Configuration Server
(one primary and
two secondaries)

t2.small 1 2 GB 8 GB

Routing Server t3.medium 2 4 GB 8 GB

B. Results
The Root Mean Squared Error (RMSE) is a typical metric

by which predictions are evaluated, and will be used as the
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TABLE IV: AWS EMR Cluster Specifications for Apache
Spark

Role EC2 Type CPUs Memory

Master r5.2xlarge 8 64 GB
Slave (5 Nodes) r5.2xlarge 8 64 GB

metric of comparison across the machine learning algorithms
herein. It is computed as the root of the squared sum of
distances of predicted and true values. For the ith record,
the difference between predicted and actual AQI is calculated.
Then the differences over n total observations are squared,
averaged, and the square root taken (see Equation 2).

RMSE =

vuut 1

n

nX

i=1

⇣
Yi � Ŷi

⌘2
(2)



The Elastic Net, Random Forest Regression and Gradient
Boosted Regression Trees were run under several parameter
settings, outlined in Table V. Models were compared using
using k-fold cross validation—a technique employed to com-
pare and select models—with k = 10 folds, using a random
80/20 train/validation split for the 2016–2017 data. The models
were then tested on 2018 data. RMSE was reported for both
the validation and test sets. Owing to the small size of the final
input data, all algorithms were also run both on a distributed
framework, using Spark’s MLlib, as well as on a local machine
with Python’s Scikit-Learn. RMSE results are reported in
Figure 5.

TABLE V: Modeling Parameters
ML Algorithm Parameters

Elastic Net � = 1.0, ↵ 2 {0, 0.1, . . . , 0.9, 1.0}
Random Forest Regressor Max Depth 2 {2, 9, 16, 23}

Number of Trees 2 {2, 10, 18, 26, 34, 42}
Gradient Boosted Regression Trees Max Depth 2 {2, 6, 10}

Max Iterations 2 {2, 6, 10}
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Models in Spark MLlib and Scikit-Learn

The results from Figure 5 confirm that all three ma-
chine learning algorithms preform significantly better than
the baseline. Moreover, the Elastic Net generates the lowest
test and validation RMSE on both Spark MLlib and Scikit-
Learn. Although the resulting RMSEs generated by Spark
MLlib and Scikit-Learn aren’t an exact match for each ma-
chine learning algorithm—owing to the randomness of the
train/validation/test procedure—the consistency in the imple-
mentation algorithms across both platforms is reassuring.

All algorithms confirm that bike-share ride count is one of
the top two features when predicting the following day’s AQI.

Figures 6 and 7 report the execution time for Random Forest
Regression and Gradient Boosted Regression Trees across
various parameter settings on Spark MLlib. As expected,
computational time increases non-linearly as maximum depth
increases.
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Spark MLlib

Although it was necessary to leverage a distributed comput-
ing framework to merge and manipulate all 10 gigabytes of
data for this analysis, using that same distributed platform to
execute the machine learning algorithms resulted in diminish-
ing returns to scale, even after additional pre-processing/data
munging steps intended to speed up the Spark MLlib execution
times. The raw data, once cleaned, joined, and aggregated, was
orders of magnitude smaller than the raw data (KB versus 10
GB).

Using Spark MLlib to execute the machine learning al-
gorithms on such a small data set was akin to killing a
fly with a cannon, deploying a far too complex solution
to solve a relatively simple problem. Figure 8 depicts the
excessive computational time—exclusive of data transfer time
between Mongo DB and Spark—required by Spark MLlib



to run all three machine learning algorithms in comparison
to running those same algorithms on a local machine using
Scikit-Learn. These significant discrepancies in execution time
across platforms are attributed to two main causes.

Firstly, Spark MLlib excels for algorithms whose perfor-
mance improves when distributed across a cluster. Algorithms
that tend to work poorly within the distributed framework rely
on boosting techniques, i.e., iteratively combining weak learn-
ers to form a single, stronger learner. This process requires a
large amount of data-shuffling between individual nodes in a
cluster, which is detrimental to performance.

Secondly, the massive overhead required to run a machine
learning algorithm on Spark MLlib, on such a relatively small,
aggregate data set is also a likely contributor to the excessive
processing times. Comparatively, running those same algo-
rithms on a local machine with Scikit-Learn generates near-
instant results with no algorithm taking more than 10 seconds
to complete.
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V. CONCLUSION

A variety of ride-sharing networks are popping up in cities
around the U.S.: from cars to bikes to scooters, the public
can easily access temporary transportation for relatively small
sums. As ride-sharing systems grow and evolve, it behooves us
to measure the impact these various systems have on society,
so that municipal and/or state governments can enact policies
that restrict or encourage certain behavior.

This research establishes an inverse relationship between
daily air quality indicator (AQI) values and the daily intensity
of bike-share ridership. The authors designed and deployed a
distributed data science framework on which to process and
run machine learning algorithms. 10 gigabytes of CitiBike
ridership data, joined with air quality indicator (AQI) data
for New York City, were input into three machine learning
algorithms on distributed systems with varying characteristics.
All machine learning algorithms tested identified bike-share

ridership intensity as either the most important or the second
most important feature in predicting future daily AQIs.

The authors also empirically demonstrated that although a
distributed platform was necessary to ingest and pre-process
the raw 10 gigabytes of data, the actual execution time of
all three machine learning algorithms on the aggregated data
was far faster on a local, commodity computer than on its
distributed counterpart. This result is attributed to the high
computational overhead costs associated with operating a
distributed data science framework, relative to the small size
of the aggregate data necessary to run the algorithms.

Future research should include using additional data sources
that may impact pollution areas in major urban environments
to better predict future AQIs.
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