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Abstract—In this research, we employed distributed systems to
explore the similarities in parking ticket records using unsuper-
vised machine learning algorithms on a large dataset. Using 37
million ticket records (9 GB) collected by the New York City De-
partment of Finance, we applied an algorithm to cluster existing
tickets and dive deeper to find the distribution of precincts within
different clusters. Amazon Web Services including S3, EC2 and
EMR, and tools like MongoDB and Apache Spark were used
in this endeavor. In this study, computational time and cost for
different EMR settings were evaluated. We conclude that there
are significant computational advantages to using distributed
systems when implementing unsupervised learning on a large
dataset as well as storing and managing data. We also observed
that it is time efficient for a cluster with more workers instead
of fewer workers with large memory space for the utilized data
set. However we observed a trade-off between the execution time
and the total cost for the cluster configuration.

Index Terms—Distributed computing, Distributed databases,
Distributed information systems, Machine learning, Transporta-
tion

I. INTRODUCTION

In the fast growing cities, parking has been a major chal-
lenge for both residents and law enforcement agencies alike.
A recent study showed that Americans, on average, spend 17
hours searching for parking spaces, resulting in a total of $20
billion in parking fines, and an individual cost to drivers in
wasted time and fuel of $345 yearly [1]. Fees collected for
parking violations are growing quickly, and have the potential
to be a serious burden for the urban residents. For the last ten
years, revenue from parking fines grew in New York City by
35 percent, raising $993 million, largely (55%) from parking
violations in 2016 [2]. Many residents either cannot afford
these parking fines or choose not to pay them, generating
large amounts of uncollected court debt, not to mention wasted
enforcement and judicial costs. In 2006, New York City had
$600 million in uncollected parking violation fees [3].

There have been many studies analyzing parking behavior
and proposing systemic improvements, with an emerging
focus on leveraging the internet of things (IoT). Khana and
Anand’s recent work presented an IoT-based parking system
that informs users about available parking spots using passive
infrared and ultrasonic sensors installed in parking spaces
[4]. Stenneth et al. utilized GPS and accelerometer sensors
embedded in smartphones to detect vehicle locations and
the locations of parking meters in an effort to analyze a

driver’s behavior and provide timely alerts to avoid parking
violations [5]. Understanding a drivers; parking behavior us-
ing IoT sensors can help develop a dynamic pricing model
based on supply and demand. A study by Holguin-Veras et
al. conluded that New York and New Jerseys time of day
pricing initiative had an impact on 7.4% of all trips, yielding
behavioral changes in parking facility usage, time of travel,
and payment type, among others [6]. Many companies are
also developing and commercializing IoT infrastructure to
improve real-time parking behavior monitoring, analysis and
recommendations. Verizon recently announced 40% growth in
IoT network connections for transportation systems in 2017
[7].

To store, manage and process real-time sensor data from
multiple sources including drivers, parking enforcement offi-
cers, parking meters and sensors on both vehicles and roads,
it is critical to develop scalable infrastructure that can store,
manage and process data [8]. Relational databases, which are
most widely used for storing and managing data, do not offer
native mechanisms for data redundancy and availability in case
of a database failure, nor scalability beyond a single server.
Developing a machine learning model using large volumes of
data on a single machine requires protracted execution times,
and is often unable to provide feedback in real-time. While
high-performance computing (HPC) or distributed computing
showed improved execution time, HPC is more susceptible to
failure and is more costly [9].

Understanding aforementioned issues, the purpose of this
paper is to store parking ticket data generated by New York
City (NYC) and to analyze data to find, if present, patterns of
the vehicles being ticketed using a scalable data pipeline. We
then utilized output clusters of ticketed vehicles for aligning
with precincts, a geographical unit of the city. Also, the paper
focuses on performance, time efficiency and expenses of the
applied algorithms and compares the results with various de-
ployment settings. We concluded that using distributed systems
to implement unsupervised learning on a large dataset has big
advantages regarding data management and time efficiency.
We observed that it is time efficient for a cluster with more
workers instead of fewer workers with large memory space
for the utilized dataset.∗ These authors contributed equally.



II. BACKGROUND

A. NoSQL and MongoDB
Over the past two decades, technology companies have

tracked detailed user behavior through websites and IoT de-
vices in real-time, generating a huge volume of data, whose
structure (or schema) is constantly evolving [10]. To store data
with such explosive volume growth, there was a clear need for
a robust, affordable, and responsive data management/storage
solution. In the late 2000s, many research and open source
projects including Google BigTable [11] and Amazon Dynamo
[12] demonstrated strong performance and scalability using
newly developed non-relational databases, NoSQL (not only
SQL). Many new database management systems also support
distributed data sources. By dividing and storing data in differ-
ent servers (shards), data availability is greatly improved upon
by maintaining replicas in multiple servers. Additionally, many
NoSQL databases support storing schemaless data, and are
designed to store data that is closely related, as an aggregate,
in the same server node.

MongoDB, one of the most popular NoSQL databases,
stores data in schemaless JavaScript Object Notation (JSON)
document format, allowing users to easily add and remove
fields in a document. MongoDB is designed to scale and
and split data across multiple servers, and manages loading
data across a cluster, balancing data distribution in multiple
servers and routing user requests to the correct server. This
enables users to focus on programming rather than low level
system architecture and data distribution. MongoDB addition-
ally supports indexing, to improve query performance and
aggregation pipelines by designing a complex pipeline through
the sequential combination of multiple simple queries [13].

B. MapReduce and Apache Spark
Hadoop’s MapReduce, introduced in 2004, implemented

efficient distributed techniques in an attempt to speed up
large scale data processing and analysis [14]. MapReduce
splits data into smaller chunks across different nodes, and
subsequently maps and processes a task, e.g., filtering and
sorting, in parallel. The output of a mapped task becomes
the input of a reduce operation, which performs a summary
operation. This highly-effective model allows users to design
programs with successive map and reduce operations, and is
a popular and powerful programming paradigm.

Spark was designed in UC Berkeley’s AMPLab in 2009
and open-sourced in 2010. Although Spark adopts MapRe-
duce concepts, it runs up to 100 times faster than Hadoop
MapReduce, utilizing in-memory computing and an advanced
task-execution engine [15]. Spark also has built-in libraries
that allow for efficient iterative computation. Included with
version 0.8 in 2013, MLlib was the library within Spark
to support machine learning features. The early version of
MLlib APIs worked with Sparks native Resilient Distributed
Datasets (RDD)—a fundamental data structure of Spark—and
has since been placed into maintenance in favor of MLlib for
DataFrames, a spreadsheet-like collection of data organized in
columns and rows [16].

There is a paucity of academic research that benchmarks
Spark MLlib performance, either evaluating the library itself
under varying conditions. A number of researchers from
DataBricks authored a 2016 paper providing an academic
introduction to MLlib [17], and discussing its performance
across versions. This research provides a similarly extensive
look at performance, examining results generated when run-
ning Spark MLlib on a specific dataset [18], [19].

III. SYSTEM OVERVIEW

A. System Workflow

In this research, we built a scalable pipeline to store and
process parking violation data, designed to be robust when
dealing with the high frequency and volume of such data.
Technologies and platforms were selected to build an unsu-
pervised clustering model with high availability and quick
execution times. We therefore selected Amazon Web Services
(AWS), a cloud platform service as the primary platform
to host storage, data extraction, transform and load (ETL)
processes and machine learning tasks. An overview of data
pipeline is noted in Figure 1.

1) Data Storage: Data collected from NYC OpenData [20]
was stored in Amazon Web Service (AWS) Simple Storage
Service (S3), a cloud storage service that can handle large vol-
umes of data. S3 provides replicated hosting in multiple data
centers, allowing high availability, as well as interoperability
with other AWS components, including Elastic Map Reduce
(EMR) and Elastic Compute Cloud (EC2). In this study, we
used four years of NYC parking tickets data, from 2015 to
2018 with an initial total volume of over 8 GB. After applying
preprocessing steps in Section III-B1, we ultimately stored 3.2
GB data into S3.

2) Data Management: We launched a total of 13 Elastic
Cloud Compute (EC2) instances on top of which we mounted
MongoDB architecture. Of the 13 instances, we structured
them so that we had 3 shards for splitting the entire data set
into three subsets where each one contains 3 instances; other
3 instances were used as a configuration shard and its two
replicas; and, the last instance was used as mongos, a routing
service node which takes user requests to the correct instance
that contains the requested data. In each of the 3 shards and
1 configuration shard, we use a total of 3 instances, where
one of these instances can be used as the primary node, and
the other two are the secondary nodes. Each primary node
is responsible for reading and writing operations, and copies
data to secondary nodes has the responsibility to maintain
replicated data in case a master node fails due to networking,
power outage and other system failures. The configuration
shard has the responsibility to manage the metadata of other
nodes and the overall database. The other 3 shards contain the
distributed data.

Figure 2 describes the MongoDB configuration. MongoDB
manages data balancing and routing from instances with
different hardware specifications.



Fig. 1: System workflow

Fig. 2: MongoDB setting

3) Data Analysis: AWS EMR uses Hadoop’s YARN (Yet
Another Resource Negotiator) as the cluster manager, and
automatically provisions hardware resources (EC2 instances)
and installs the required software for running Apache Spark.
Apache Spark comes with Spark SQL and Spark MLlib, which
enable distributed data preprocessing, feature engineering and
modeling. In order to compare the efficiency of different
clusters, we launched four types to clusters with different
configurations. The detailed setting are described in Table I.

TABLE I: Cluster Types and Specifications

YARN 1 YARN 2 YARN 3 YARN 4
Type of EC2 instance(s) M4.2xLarge M4.xLarge M4.xLarge M4.xLarge

Number of instances 3 3 5 6
Number of worker nodes 2 2 4 5

Number of cores per worker 16 8 8 8
RAM per worker (GB) 32 16 16 16

Disk Storage per worker (GB) 32 16 16 16
Cost per hour ($) 0.36 0.18 0.3 0.36

B. Algorithms

We implement an unsupervised machine learning algorithm,
k-means clustering, in an effort to identify similarities among
ticketing data [21]. In our final model, each parking citation
is assigned to a cluster. We subsequently map precincts to
their corresponding clustered observations. Once mapped, we
then calculate the distribution of tickets per precinct within a
cluster, allowing us to identify the precincts in which a vehicle
is more prone to be ticketed.

1) Data Preprocessing: We use two major classes of
features from the source data: vehicle-related features (e.g.,
vehicle color, type, etc.) and time of day. We eliminated
variables from the original data as follows:

• Variables with uniquely-identifying information infor-
mation about both the car and the driver, to ensure
anonymity.

• Certain features related to violation details such as officer
information and violation description, as our focus is on
vehicle characteristics and time of day.

• Location-related data is removed during the clustering
process, but added back post-clustering to map cars to
precincts.

After removing unnecessary variables, the data used as input
to the clustering algorithm was 3.2 GB.

2) Feature Engineering: Many of the features used as
input to the clustering algorithm were categorical, such as
vehicle color, make, type, registration state and license plate
type. Since the k-means clustering alorithm only operates on
numeric data, we converted categorical data to a numerical
representation by applying string indexing and one hot encod-
ing algorithms. String indexer algorithms convert categorical
string values into integer indexes. One hot encoding expands a
column to as many columns as distinct strings in the category
and creates a sparse vectors where only one column contains
a 1 and others are 0 [22].

Other numeric features of the data include violation time,
where we extracted hour (from 1 to 24), day of the week (from
1 to 7) and month (from 1 to 12) from the violation date.



Fig. 3: The k-means algorithm clusters parking tickets based
on the vehicle characteristics and time.

3) Machine Learning Model: k-means clustering aims to
partition n observations into k cluster, where each observation
belongs to the cluster with the nearest mean distance. k-
means performs the process by repeatedly assigning data
points to initial centroids, and iteratively updating centroids
and assignment of obersvations to those centroids until a
stopping condition is satisfied.

For an m dimensional feature vector, let us assume that the
observations are labeled X(1), X(2), ..., X(n). The clustering
algorithm requires a hyper-parameter as an input, namely,
k, the number of clusters to be identified. The algorithm
executes as follows:

Algorithm 1 k-Means Algorithm
Initialize cluster centroids u1, u2, ..., uk ∈ Rm randomly
while uj is not converged do

foreach i do
u(i) := arg minj ||x(i) − µj ||2

end
foreach j do

µj :=
∑m

i=1 {c
(i)=j}x(i)∑m

i=1 {c(i)=j}
end

end

To select the hyper-parameter k, we chose an optimal value
of k based on a scaled within set sum of squared errors
(WSSSE) metric. WSSSE is defined as the sum of squared
errors within each cluster. We then employed the optimal k
across different AWS EMR configurations to compare execu-
tion performance, time efficiency and overall cost.

IV. EXPERIMENT OUTPUT

A. Data

The data used for the experiments is the New York parking
tickets data set from NYC OpenData, which spans the fiscal

Fig. 4: Heat map of the number of tickets per precinct in 2018

years between 2015 and 2018 [20]. After an initial pre-
processing, the size of data used as input of the clustering
algorithm was 3.2 GB which contains 36.5 million observa-
tions. Features of the input data include:
• Plate Type: Passenger, commercial, taxi, bus, etc.
• Registration State: The state where the vehicle was

registered
• Vehicle Color : The color of the vehicle
• Vehicle Body Type: SUV, sedan, truck, trailer, etc.
• Issue Quarter: The quarter when the ticket was issued
• Issue Month: The month when the ticket was issued
• Issue Day of the Week: The day of the week when the

ticket was issued
• Violation Time: The hour of the day at which the ticket

was issued
As part of our initial exploratory data analysis of the data,

we were created a heatmap for all parking violations in 2018.
The frequency of parking tickets within each precinct are
shown in Figure 4. The darkest region shows the Upper
East Side of Manhattan with the most parking tickets while
the lighter colored regions including Brooklyn and Queens
indicates the precincts that were not heavily ticketed.

B. Results

The first step in our analysis requires determining the correct
number of clusters, k. To ascertain optimal k, we needed
to obtain a within set sum of squared error (WSSSE) value
for different k values for determining the optimal k with
the maximal improvements in WSSSE and minimal execution
time. For each cluster k, the WSSSE is computed as follows:

WSSSEk =

k∑
k=1

1

2nk
Dk

where

Dk =
∑

xi∈Ck

∑
xj∈Ck

||xi − xj ||2 = 2nk
∑

xi∈Ck

||xi − µk||2



Fig. 5: Weighted WSSSE and k

TABLE II: Cost for building a model and average distances
from centroids, when k = 12.

YARN 1 YARN 2 YARN 3 YARN 4
Number of instances 3 3 5 6

Number of cores per worker 16 8 8 8
RAM per worker (GB) 32 16 16 16

Time per model (sec) 156.1064 244.8653 202.6197 138.2841
Cost per model (USD) 0.94 0.73 1.01 0.83

Distance from Centroid
(standardized WSSSE) 2.1277 2.1210 2.1089 2.1136

As WSSSE values are difficult to interpret, owing to the size
of the data, we opted to standardize the WSSSE by dividing
by n, the number of observations, and taking the square root.

Standardized WSSSEk =

√∑k
k=1

1
2nk

Dk

n

We plotted scaled WSSSEs where k ranges from 2 to 20. We
ultimately selected k = 12 as an ideal numnber of clusters,
where we begin to observe diminished returns if k were to
increase to larger values (see Figure 5).

We ran the k-means algorithm on four different EMR
clusters— described in Table I—and compared speed, perfor-
mance and overall cost as shown in Table II. As a general
result, a large number of workers in a cluster performs faster.
Figure 6 shows that the execution time for YARN 2, with
only 3 workers and the lowest memory settings is the slowest
among them all; the other three produced similar results.
YARN 4 is the fastest among all tested configurations, owing
to it having the most workers. Mean execution time per worker
was plotted in Figure 7. When comparing YARN 1 and
YARN 2, the configuration with more memory has a shorter
execution time, ceteris paribus. Similarly, configurations with
more workers had shorter execution times. YARN 4, with the
largest number of workers, performs faster than all compara-
tive YARN configurations.

Fig. 6: Execution Times for Different YARN Configurations

Fig. 7: Mean Execution Time per Worker for Different YARN
Configurations

We also observed that the YARN 2 configuration, with the
slowest execution time, actually has the lowest total cost, as
shown in Table II. Therefore, if operational costs are an issue,
the configuration with shortest execution time is not the most
cost-effective solution.

We also imported individual clusters and visualized them on
a heatmap, as shown in Figures 8, allowing us to visualize the
frequency of ticketed precincts. Of note is that Times Square
is more frequently than other precincts, likely owing to the
high level of traffic.

V. CONCLUSION

In this research, we applied k-means clustering to 37 million
ticketed observations and compared the computational time



Fig. 8: Heatmaps on individual Clusters

and related cost by implementing different settings of AWS
EMR clusters. We also mapped and visualized the results
as distribution of tickets per precinct in different clusters to
understand the patterns in locality of tickets.

We used 4 years of historical ticket information to generate
our results. In our implementation, we were able to generate
efficiency by piping data through AWS S3, MongoDB to
Spark. Regarding the results, we observed that clusters with
more workers are most time-efficient as it reduces the data
size for each cluster to handle. However, there is a trade-off
between the execution time and total price for the cluster. We
should always have the best-balanced execution plan based on
our speed requirement and budget.

In our future work, we will encompass the entire scope of
parking tickets in a general setting with real-time information
on all cars that may have parked in a particular region.
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