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Abstract—As the amount of publicly shared data increases,
developing a robust pipeline to stream, store and process data is
critical, as the casual user often lacks the technology, hardware
and/or skills needed to work with such voluminous data. In
this research, the authors employ Amazon EC2 and EMR,
MongoDB, and Spark MLlib to explore 28.5 gigabytes of CMS
Open Payments data in an attempt to identify physicians who
may have a high propensity to act unethically, owing to significant
transfers of wealth from medical companies. A Random Forest
Classifier is employed to predict the top decile of physicians who
have the highest risk of unethical behavior in the following year,
resulting in an F-Score of 91%. The data is also analyzed by
an anomaly detection algorithm that correctly identified a high-
profile case of a physician leaving his prestigious position, as
he failed to disclose anomalously-large transfers of wealth from
medical companies.

Index Terms—Distributed computing, Machine learning,
Anomaly detection, Random Forest Classifier, Medical payments

I. INTRODUCTION

Sectors that deal with vast amounts of public data, such
as healthcare, have long held the potential to unlock untold
mysteries about the populations they serve. Until recently,
the amount of data available for analysis far outstripped the
abilities of both the technology and machine learning algo-
rithms necessary to extract actionable information. Very recent
advances in data and computational science have allowed
researchers to tap into and identify patterns and relationships
hidden in this sea of data. In healthcare, this leap has facilitated
the identification of issues, both clinical and administrative,
throughout the healthcare continuum.

Often times, medical research is focused on the clinical,
owing to the high salaries of physicians, significant costs
of procedures for patients, the costly operation of medical
facilities, and the relatively limited amount of data required
for well-scoped medical studies, e.g., a study on hypertension.
However, recent advances have enabled researchers to comb
through the vast amounts of data associated with medical
administration.

One salient facet of healthcare administration is the in-
terconnected nature of the companies who provide medical
supplies, devices and drugs to the physicians who use and/or
prescribe the aforementioned products. There are several ex-
amples supporting the hypothesis that a physician receiving

disproportionately large transfers of wealth or value from an
organization, may be more inclined, persuaded, or outright
fraudulent in concluding that certain medication, procedures,
or medical devices are more effective than they truly are. Such
payments or transfers of value have been formally linked to
unethical physician and/or institutional behavior [1], [2], [3].
However, the ability to apply machine learning algorithms at
scale to analyze all physicians receiving transfers of wealth
has been elusive. The authors have therefore mined the Open
Payments data from the Center for Medicare & Medicaid
Services (CMS) to analyze all payments or other transfers of
value from group purchasing organizations (GPOs) and device
and drug manufacturers to physicians or research institutions.

With an impressive 28.5GB of available data from 2013–
2017, the authors tested the boundaries of a distributed
computing framework for this data set, identifying a sys-
tems configuration—after many iterations—sufficiently com-
putationally powerful and robust to store, manage, process,
and analyze data at this scale. Once established, the authors
explored the computational performance of a Random Forest
classifier to identify those physicians who are predicted to
rank in the top decile of all those receiving payments or other
transfers of value from purchasing organizations (GPOs) and
device and drug manufacturers in the aggregate. This Audit List
identifies a subset of physicians—based on mean transfers of
wealth—who warrant additional scrutiny, similar to how the
IRS audit a small fraction of yearly tax returns [4].

Using anomaly detection techniques, the authors also iden-
tified individual transfers of wealth to physicians or research
organizations that were anomalously high, warranting perhaps
the highest level of scrutiny. In fact, the anomaly detection
technique employed identified a physician that recently left his
position, and was cited by the New York Times for potential
conflicts of interest owing to his receiving disproportionate
payments or other transfers of value.

Machine learning models were tested across several dis-
tributed computing system configurations using Amazon Web
Services (AWS) Simple Storage Services (S3) and Apache
Spark on Elastic Map Reduce (EMR).

II. BACKGROUND

Publicly available government data sets can provide various
social and economic benefits. Many government organizations
have begun to publish more data every year. Publishing data∗ These authors contributed equally.



helps governments to crowwdsource and improve upon the
quality of public services, and their outcomes [5]. It also
eases interaction and cooperation between public and private
sectors, in an effort to improve economic growth [6]. The
United States government releases and maintains many pub-
licly available data sets; the breadth and volume of these data
sets increases yearly. For instance, data.gov—the United
States government responsible for publishing many public data
sets—currently maintains over 246,000 publicly available data
sets; it only had 312 publicly available data sets in 2009 [7],
[8].

In order to collect and process CMS Open Payments and
related data sets, it is essential to develop a sustainable data
pipeline. As the volume of data—which is already very large—
continues to grow, it is particularly important to develop a
scalable, time- and cost-efficient data storage and processing
system.

1) Cloud Computing: Cloud computing utilizes storage and
computing resources in multiple data centers connected via
a network, and provides services on demand to their users.
Cloud computing is highly scalable and user-friendly, reacting
to user needs dynamically by scaling resources based on
needs, and providing IT infrastructure and maintenance [9].
Minimizing costs by providing shared hardware resources and
maintenance services, cloud computing has become a powerful
tool for individuals and organizations to store, manage and
process a large volumes of data [10], [11], [12].

2) MapReduce and Apache Spark: Hadoop MapReduce,
introduced by Google, is a programming paradigm for pro-
cessing a large volume of data in parallel by dividing a
task into a set of subtasks, and processing them in parallel.
MapReduce is designed to run on a single machine, or on
a cluster with multiple machines to efficiently process data.
For MapReduce, users have to design map and reduce steps,
where a map function, such as filtering, processes key-value
pairs in parallel. A reduce function takes the outputs of the
map function as input from multiple machines and executes a
summary operation, returning a single answer to a driver [13].
MapReduce is a highly efficient model, and it and its variations
are actively used in both research and industry [14], [15], [16].

Apache Spark adopts the MapReduce model, but executes
a task 100 times faster than MapReduce by processing data
in memory. Also, Spark uses efficient job scheduling and
recovery model using directed acyclic graph representation,
and still runs 10 times faster in disk than MapReduce [17],
[18], [19].

3) Amazon Web Services: Amazon Web Services (AWS) is
the largest public cloud service provider, providing various ser-
vices including data storage, management, computing, analyt-
ics, etc. [20]. Cloud storage is a type of cloud computing where
data is stored in multiple servers throughout multiple locations,
but its virtualization capabilities makes its distributed nature
seamless. Additionally, cloud storage provides high durability
by maintaining duplicated copies in different machines [21].
AWS Simple Storage Services (S3) is a cloud storage system,
adopting a “pay-as-you-go” charging model, offering infinite

Fig. 1: Data science pipeline

storage capacity, data redundancies, 99.99% availability, and
low data access latency [22].

AWS Elastic Map Reduce (EMR) provides a fully man-
aged Hadoop framework hosted on Amazon Elastic Compute
Cloud (EC2) instances [23]. EC2 is an AWS cloud computing
environment where users can configure the operating system,
CPU, memory, disk, network, etc. [24]. Based on Iosups
study, EC2 demonstrates better performance and lower overall
costs compared to other competing cloud computing services
suitable for a large scale scientific studies [25]. AWS EMR
provides cluster maintenance and big data processing tools
including Spark, Hadoop MapReduce, HBase, Flink, etc., and
allows users to easily configure and launch a cluster, which is
easily resizable [26]. In this research, we configured various
AWS EMR clusters with Apache Spark installed.

III. SYSTEM OVERVIEW

A. System Workflow

The data science pipeline was designed around scalability
as well as the ability to efficiently run machine learning al-
gorithms, leveraging cloud resources and distributed methods.
Technologies were selected to build a scalable data ingestion,
audit generation, and anomaly detection system. We therefore
selected Amazon Web Services (AWS) as the primary platform
to host storage, data extraction, transform and load (ETL)
processes and machine learning tasks. The data pipeline,
including data and distributed storage and computing services
is depicted in Figure 1.

1) Data Sources: The publicly available Open Payments
data was obtained from the Center for Medicare & Medicaid
Services (CMS) [27]. This data set includes payments or
transfers of value to physicians and research organizations
from group purchasing organisations (GPOs), medical device
and drug manufacturers. It also contains data on physician
ownership and investment interests. Additional details about
the data can be found in § IV-A.

2) Data Storage: The Open Payment CMS data was stored
in AWS Simple Storage Services (S3) to ensure scalablitiy
and data integrity, while minimizing time and cost for server
maintenance.



3) Data Processing: Feature engineering and machine
learning was performed on an EMR cluster by processing data
read from S3. Accessing data stored in S3 from EMR allows
users avoid storing multiple copies of data in each cluster node,
by looking up data in a central storage system. EMR also
provides a built-in function to load and write data to/from S3
efficiently.

B. Algorithms

Variations on a Random Forest Classifier were used to
generate both the Audit List, as well as to detect individual
anomalous transfers of wealth to physicians or research orga-
nizations.

1) The Audit List: The objective of the Audit List is
to predict which physicians or research organizations will
receive sufficiently large mean transfers of wealth from GPOs,
medical device and drug manufacturers, that may be indicative
potentially unethical behavior. The measure of interest, mean
transfers of wealth, is computed by taking the sum of all
transfers of wealth to a physician or research organization
across all years, and dividing that sum by the total number of
transfers of wealth to said physician or research organization.

To identify physicians or research organizations potential at
risk of unethical behavior, aggregate CMS data from 2013–
2017 (inclusive) was input into a Random Forest Classifier to
generate predictions. An 80/20 train/test cross validation split
across years was used to train the Random Forest Classifier.

A Random Forest is an ensemble of decision trees, where
the output is either a mean prediction (regression setting) or the
mode of the classes (classification setting) of the constituent
trees. Each individual tree is exposed to a (potentially boot-
strapped) subset of the rows and columns and consists of a
series of binary splits that look to optimize a loss function. The
compartmentalized nature of the algorithm with independent
trees is especially well-suited to a distributed framework.

Tree depth is an important hyper-parameter of a random
forest algorithm. Although increasing tree depth improves a
model’s predictive accuracy, it requires a longer training time.
Moreover, it may cause overfitting, a scenario where the model
is overly sensitive to training data. Spark’s MLlib provides
a method to specify the maximal depth of any individual
tree within the forest, allowing us to analyze the relationship
between tree depth and the size of data used to train the
random forest.

2) Anomaly Detection: Whereas the Audit List seeks to
analyze mean transfers of wealth in the aggregate, anomaly
detection seeks to detect singularly large, outlying transfers of
wealth that may be indicative of potentially unethical behavior.
Although the ability to detect anomalous data is a skill relevant
across all fields that employ data, is has been historically used
very heavily in the field of cyber-security [28], [29], [30],
[31]. The authors employed an anomaly detection technique
similar to the one outlined by Shi et al. [32]—with a case
study provided by Dan Mallinger [33]—effectively turning a
supervised machine learning technique into an unsupervised
learning technique.

Supervised machine learning trains an algorithm on data
that contains both inputs and an target variable. E.g., trying to
predict house prices (target variable) based on several features
such as square feet, zip code, number of bathrooms. A data
scientist may use linear regression—a supervised learning
technique—to train the model using both input data (x1 =
square feet, x2 = zip code, x3 = number of bathrooms) and
target data (y = known sales prices). Once the model is trained,
it can be used to make predictions about future home sales
prices (ŷ) given x1, x2, and x3.

Unsupervised machine learning trains an algorithm on data
that contains exclusively input variables. E.g., one may be
interested in finding out which customers are similar, given
a set of input features such as age (x1), job title (x2),
years of higher education (x3), etc. The term similar here is
intentionally nebulous: loosely speaking, the algorithm is left
to its own devices to discover interesting structures in the data,
as there is no output data (y) provided to the model on which
to train.

The struggle with applying anomaly detection to the CMS
data to identify individual physicians or research organizations
that have an anomalously-high propensity for unethical behav-
ior, is that the data is not labelled, i.e., there is no feature
in the CMS data set that identifies individual physicians or
research institutions that have behaved unethically in the past.
With over half a billion individual physicians and research
organizations that have received at least one transfer of wealth
in the past five years, it is certainly infeasible to manually
identify unethical behavior, and extremely difficult to do so
by scraping information from the internet.

When applying machine learning to anomaly detection,
the authors selected a Random Forest Classifier—a super-
vised learning technique—as the algorithm of choice, with a
clever modification. This modification resulted in a pseudo-
Unsupervised Random Forest Classifier. To achieve this mod-
ification, an additional binary indicator variable (column) is
added to the existing unsupervised data. All observations in
the original data are labeled as non-anomalous. This label
is effectively a target (y) for the previously unlabeled data,
allowing the data to be used in a supervised machine learning
algorithm.

To intentionally create anomalous data, a copy of the
original CMS data is taken, and the values (cells) in the
data set are randomly permuted across rows, i.e., the cells
were randomly shuffled. These random permutations create
a data set whose individual values are non-anomalous, but
whose relationships across columns are anomalous, resulting
in anomalous data. An additional binary indicator variable
is also added to the intentionally-anomalous data, and those
observations are labelled as anomalous, and can now similarly
be used as input to a supervised machine learning algorithm.
Finally, the original CMS data—with the newly appended non-
anomalous labelled column—is concatenated row-wise with
the new anomalous data. This newly created data set now has
twice as many observations (rows) as the original data, and
one additional variable (column), the indicator as to whether



or not the observation is anomalous.
The pseudo-Unsupervised Random Forest Classifier is sub-

sequently trained on the modified data, and predictions gen-
erated based on individual transfers or wealth made to physi-
cians or research organizations. Alternate machine learning
algorithms were tested, with mixed results. Certain classifica-
tion algorithms generated results inferior to those generated
by the Random Forest Classifier. Other algorithms, such as
XGBoost—a scalable tree boosting algorithm—took almost a
full day to run, far longer than the Random Forest Classifier.
Owing to the high costs associated with running and maintain-
ing the large and complex distributed computing framework
associated with this research and data, the authors lacked the
funds to run an extensive comparative analysis of algorithms,
run times, and predictive ability. Moreover, in the interest of
uniformity, the ability to use a Random Forest Classifier for
both the analysis of aggregate as well as individual anomalous
physicians payments was preferred.

IV. EXPERIMENTAL OUTPUT

A. Data

As of 2013, the Center for Medicare & Medicaid Ser-
vices (CMS) publishes yearly data documenting payments or
transfers of value to physicians and research organizations,
as well as physician ownership and investment interests [27].
All physicians and/or research organizations who receive pay-
ments or transfers of value from group purchasing organiza-
tions (GPOs) and device and drug manufacturers are required
to report those transactions to the CMS. The physician disci-
plines included in this data set are: medical doctors, podiatrists,
osteopaths, dentists, ophthalmologists, and chiropractors. All
published CMS data was employed in this research, spanning
the years 2013–2017, totalling 28.5 gigabytes of information.
The raw data contains 58 variables (columns), and 52,992,403
observations.

As this research seeks to answer two different hypotheses,
the data was used differently to answer each question. To
identify the top decile of physicians who we predict may
operate in a potentially unethical manner, the CMS data was
subset to exclude research organizations, so as only to focus
on physicians, resulting in a data set that had 49,026,626
observations (i.e., 92.5% of the original CMS data was re-
tained). After some initial exploratory data analysis and feature
engineering, eleven features were derived from the original 58
variables, and are outlined in Table I. This was also aggregated
at the physician level, including only those physicians who
received one or more transfers of wealth over the five year
period spanning 2013–2017, resulting in 976,208 aggregate
observations.

In an effort to identify single, anomalous transfers of
wealth to physicians or research organizations, the entirety
of the 52,992,403 observations of CMS data was employed.
The anomaly detection algorithm was run separately on the
physician data (98,053,252 observations = 2 × 49,026,626
observations) and on the research organization data (7,931,554
observations = 2 × 3,965,777), as running the entire CMS

TABLE I: Random Forest Features
Feature Definition
1 The sum total number of years a physician received transfers of wealth
2 A tally of the total number of individual transfers of wealth to a a physician
3, 4 Mean of all (3) cash payments of a physician’s type or (4) alternative transfers of wealth
5 The fraction of transfers of wealth that were reported to the CMS with a delay
6 Fraction of transfers of wealth that were in cash
7 The city in which physician practices

8 Primary type of medicine practiced by the physician: medical doctor, podiatrist,
osteopath, dentist, ophthalmologist, or chiropractor

9 Physician’s specialty, selected from standardized provider taxonomy [34]
10 The state in which physician practices
11 Number of research of payments the physician received
12 The number of unique companies transferring wealth to the physician

TABLE II: System Configurations for Audit List

Master/Slave Config Slaves Memory Cores Run Time
c3.8xlarge 4 60GB 32 22m23s
c3.8xlarge 2 60GB 32 37m12s
m4.xlarge 8 16GB 4 37m43s
m4.xlarge 4 16GB 4 64m13s
m4.xlarge 2 16GB 4 n/a

local machine n/a 16GB 4 n/a

dataset through the algorithm was infeasible owing to the size
of the data and computational complexity of the algorithm.

B. Results

Perhaps the most daunting task was to establish a distributed
computational infrastructure that would reliably process such a
large amount of data. Table II provides a summary of the AWS
EC2 configurations, including the number of slaves, memory
(same across both master and all slaves), the number of cores
(same across both master and all slaves), and the total run time
required to process all data (inclusive of running the Random
Forest Classifier on the aggregate CMS data).

The final two rows of Table II indicate run times of n/a,
signifying that the data processing and/or Random Forest
Classifier algorithm failed to compute, owing to memory
errors.

Figure 2 breaks down the time required by each con-
figuration to both process the data and run the Ran-
dom Forest Classifier. Note that x-axis category titles are
the concatenation of several configuration features, e.g.,
c3.8xlarge_60GB_32c_4s implies a c3.8xlarge
configuration with 60GB of memory, 32 cores and 4 slaves.

With a reliable distributed computing system identified, the
authors quantified the quality of the Random Forest Classifier
to generate the Audit List on the aggregate CMS data. For
classification algorithms, a traditionally reported metric of
success is the F-Score (also known as an F1-Score or F-
Measure). The value of an F-score falls between 0 and 1,
with 0 being the worst possible score, and 1 being the best.
An F-Score is an aggregate measure, the harmonic mean of
two other measures, precision and recall:

F-Score = 2
( precision · recall
precision+ recall

)
(1)
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Fig. 2: Run Times vs. System Configurations for Audit List

where precision and recall are defined as follows:

precision =
true positives

true positives + false positives
(2)

recall =
true positives

true positives + false negatives
(3)

Running the Random Forest Classifier on the aggregate
CMS physician data resulted in an F-Score 91%, a very strong
result when predicting those physicians that are expected to
be in the top decile of those receiving transfers of wealth, and
therefore placed on the Audit List. The Audit List contains
roughly 60,000 physicians. Although this may seem like a
large number and/or fraction of total physicians to audit, in
2017, the IRS audited 1.1 million tax returns [35].

Also of note is that the top decile—or 90th percentile—
of all mean transfers of wealth to physicians is only $258
US Dollars. This means that on average, any physician who
received yearly average transfers of wealth that exceeded $258
warrant additional scrutiny. Owing to the trivial amount of
$258, the practical implications are that very few physicians
regularly receive transfers of wealth. Those physicians who
do regularly receive virtually any transfer of wealth from
group purchasing organizations (GPOs) or devices or drug
manufacturers on a regular basis warrant additional scrutiny.

The second task was the identification of anomalous indi-
vidual transfers of wealth to either physicians or to research
institutions, that would be indicative of unethical behavior.
Finding a stable and sufficiently powerful system configura-
tion for this task was painstaking, owing to the significant
computational requirements involved in the pre-processing of
the data—duplicating, permuting, and finally concatenating up
to 100 million records and 59 variables—as well as running the
anomaly detection algorithm on such a large data set. Table III
details the AWS EC2 configurations, including the number of
slaves, memory (same across both master and all slaves), the
number of cores (same across both master and all slaves), and
the total run time required to process all data, inclusive of
running the anomaly detection algorithm.

TABLE III: System Configurations for Audit List

Master/Slave Config Slaves Memory Cores Run Time Data
c3.8xlarge 10 60GB 32 81m Research
c3.8xlarge 6 60GB 32 118m Research
c3.8xlarge 2 60GB 32 165m Research
c3.8xlarge 10 60GB 32 1201m Physician

In order for the pre-processing and algorithmic analysis not
to fail, the CMS data was split into two separate data sets: one
exclusively for research organizations, and another solely for
individual physicians. Recall that, as a result of the required
data duplication for the anomaly detection (see §III-B), data
associated with transfers of wealth to research organizations
contained 7,931,554 observations (2 × 3,965,777) and 59
variables, totaling 1.3GB of information. CMS data associated
with transfers of wealth to individual physicians was an
astonishingly large 98,053,252 observations (2 × 49,026,626
observations) and 59 variables, totaling 47.3GB of data.

Figure 3 breaks down the time required by each configura-
tion to both process the data and run the anomaly detection
algorithm for the smaller CMS research organization data.
Note that x-axis category titles are the concatenation of several
configuration features, e.g., c3.8xlarge_60GB_32c_10s
implies a c3.8xlarge configuration with 60GB of memory,
32 cores and 10 slaves.

CMS data associated with transfers of wealth to individual
physicians was not tested on various machine configurations,
nor was it run more than once, on account of the significant
amount of cost and time required. When it was successfully
run however, 270 minutes were required to pre-process the
data, and 931 minutes were required to run the anomaly
detection algorithm.

There is no ground truth by which the authors can verify
the veracity of the algorithmic results. To the best of our
knowledge, there exists no single federal list of provably
unethical behavior by specific physicians which can be mapped
to the results generated by the anomaly detection algorithm.
There was, however, a timely and notable validation of the
authors’ research: in September 2018, Dr. José Baselga, the
former chief medical officer of Memorial Sloan Kettering
Cancer Center—and a physician flagged by the anomaly
detection algorithm—resigned his position in connection to
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his failures to disclose millions of dollars in payments from
GPOs, medical device and pharmaceutical companies [36].

V. CONCLUSION

The vast amount of data being publicly shared by U.S.
government institutions has the potential to pull back at least
some of the opaque layers surrounding large, government-run
institutions and operations. With CMS Open Payments data,
it is now possible for an individual patient to sift through the
data and examine whether or not a particular physician or
organization is receiving any notable transfers of wealth, from
whom, and with what frequency; this task is, however, not for
the uninitiated.

Additionally useful is the ability to compare and contrast
how different physicians and research organizations are related
to each other with respect to their connections to group
purchasing organizations (GPOs), medical device and drug
manufacturers. This seemingly benign exploratory data anal-
ysis task takes on a whole new dimension when one realizes
they will have to process almost 28.5 gigabytes of data, far
too large for any single machine. The scale of the data leaves
comprehensive analysis of this data just out of reach of the
average individual.

The authors have therefore developed a distributed comput-
ing framework using several Amazon Web Services as well

as Apache Spark to ingest, process, and distill the data into a
smaller, more manageable aggregate data set. Moreover, using
mean transfer of wealth to each physician over the last five
years as a target variable, the authors used a Random Forest
Classifier to identify the top decile of all physicians who
demonstrate the highest propensity for exhibiting potentially
unethical behavior in the coming year, resulting in an F-Score
of 91%.

Using anomaly detection techniques, the authors also pro-
cessed up to 100 million records to identify anomalously
large individual transfers of wealth to physicians. Although no
ground truth exists on which to validate the model’s results,
a prominent physician who recently left his prestigious role
as the chief medical officer owing to his failure to disclose
millions of dollars in payments from health care companies,
was identified by the anomaly detection algorithm as receiving
highly suspect individual transfers of wealth.
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