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Abstract—Predicting the San Francisco Fire Department
(SFFD) emergency response time is useful for both callers and
the SFFD. In this paper, we leverage machine learning and
distributed computing to attempt a solution to this problem.
While driving time can be estimated using the Google Maps
API, there are many more factors that affect the response time.
We obtained a publicly available SFFD call history dataset,
using BigQuery, containing information about the location of
the station, the location of the incident, and the time the call was
received. We combined features from this dataset with driving
time estimates from the Google Maps Distance Matrix API.

Our dataset was over a gigabyte, calling for a distributed
framework to efficient training of the machine learning models.
We fit Linear Regression, Decision Tree Regression, and Random
Forest Regression models in the Apache Spark machine learning
library (MLlib) on an Amazon Web Services (AWS) Elastic
MapReduce cluster. We benchmarked training time for each
model on different cluster sizes.

Index Terms—Distributed computing, Distributed information
systems, Machine learning, Emergency services

I. INTRODUCTION

According to the United States Census Bureau, San Fran-
cisco is the second-most densely populated large city in the
United States, where over 880,000 residents live in 46.89
square miles [1]. The San Francisco Fire Department (SFFD)
serves many critical roles for the residents and visitors by
responding to fires, natural disasters, hazardous materials
incidents, and emergency medical services (EMS). SFFD
processes emergency calls for fire suppression in addition to
prevention, dispatching the proper emergency units, providing
guidance and instructions to callers. SFFD also responds to
various natural disasters including earthquakes, tsunamis, and
severe storms and flooding. The Department of Public Health,
Paramedic Division merged with SFFD in 1997. Since then,
firefighters have been trained and licensed by the San Fran-
cisco Emergency Medical Services Agency and responsible
for both life-threatening and non-life-threatening EMS calls.
The Division of Homeland Security (DHS), works within
SFFD, to officiate chemical, biological, radiological, nuclear
and explosion incidents in addition to terrorism threats in San
Francisco [2].

Improving the system and changing infrastructure can re-
duce emergency response time, which in turn can bring
crucial benefits including improving survival rates, preventing
property loss, [3]. Emergency medical service (EMS) response
time is a key measurement for prehospital system performance
for preventing serious trauma or cardiac arrest [4]. In order
to reduce response time, researchers and practitioners have
proposed and implemented various plans including monitor-
ing real-time traffic volume and direction, sharing real-time
emergency fleet availability and location, and providing real-
time route guidance for dispatched vehicles [5], [6].

However, it is also crucial to precisely predict arrival times
in order to better manage resources and provide instructions,
such as first aids and cardiopulmonary resuscitation (CPR), to
a caller until dispatched emergency crews arrive.

Unfortunately, predicting precise arrival time of the emer-
gency vehicles is challenging in major cities, especially San
Francisco due to its population density, traffic, parking, limited
resources, terrain, etc. In 2014, local media criticized SFFD
since it did not dispatch enough ambulances and not respond
in a timely manner [7]. Trowbridges recent study showed that
urban areas and cities experience increased EMS response
time and a higher probability of delayed ambulance arrival,
due to longer trip distances, traffic congestion and trip time
variability, and higher rates of traffic and pedestrian fatalities
[]. Between 2000 and 2013, the population increased by
7.8SFFD receives over 120,000 calls yearly which is mostly
for EMS and fires, with aging equipment and limited resources
including little over a total of 1,400 employees in 51 stations
throughout the San Francisco County (Figure 1).

The goal of this project is to predict the time it will take for
SFFD to arrive on the scene of an incident. This could help
SFFD understand whether they are responding quickly enough.
Furthermore, we can analyze the differences in response time
in different areas or to different types of emergencies to better
manage resources.

II. BACKGROUND

In order to predict response times, it is critical to store,
merge and analyze data affecting response times. Based on∗ These authors contributed equally.



Fig. 1: San Francisco Fire Station Locations

Lam’s recent study, traffic congestion is the main factor
influencing the EMS response delay [8]. Storing real-time
sensor data related to response time requires a large volume
data storage. Unfortunately, depending on the data type and
frequency, the data storage size may grow rapidly and unpre-
dictably.

Cloud computing provides access computing resources to
store and process data over the Internet hosted by cloud
providers in their data centers. Cloud computing is highly
scalable and allows for dynamically adding resources based
on data processing and storage needs [9]. By sharing re-
sources among users and centralizing maintenance services
for hardware and software, cloud computing minimizes cost
and resources for managing infrastructure. Cloud computing
is a powerful tool for individuals and organizations to lower
the cost of storing and processing a large volume of data
[10], [11], [12]. Amazon Web Services (AWS) is the largest
public cloud services providing various services including data
storage, management, computing, analytics, etc. [13].

A. Big Data and Scalable Data Storage

Cloud storage is a type of cloud computing where its storage
spans in multiple servers through multiple locations, but its
virtualization makes its distribution seamless. Additionally,
cloud storage provides high durability and availability by
maintaining duplicated copies for their users [14]. AWS Sim-
ple Storage Services (S3) is a cloud storage system, adopting a
pay-as-you-go charging model and offering effectually infinite
storage capacity with high data durability, 99.99% availability,
and low data access latency [15]. S3 also provides easy
interoperability with other AWS services.

B. Big Data and Scalable Data Processing

Hadoop MapReduce is a programming paradigm for dis-
tributed computing introduced by Google. Hadoop MapRe-

duce processes data in a key-value format and is composed
of two steps, a map step and a reduce step. Once data is
distributed to multiple machines, a map function, such as
filtering, processes data in parallel and yielding an intermediate
value. Outputs from a map function are redistributed so that
outputs with the same key are located in the same machine.
Then the data can be processed by a reduce function which is a
summary operation. The output of a reduce function returns to
a driver node and is passed to the client. This highly-effective
model allows users to design programs with successive map
and reduce operations.

Apache Spark is a variant model of Hadoop MapReduce,
with improved performance and efficiency. Spark uses resilient
distributed dataset (RDD), which is an abstract of a read-
only collection of objects partitioned across a set of machines.
RDD can be rebuilt if data is lost or a system fails and
achieves fault tolerance using RDD lineage. RDD lineage
tracks RDD dependency information including its parent RDD
and operation used to create the current RDD in a directed
acyclic graph (DAG) [16]. RDD lineages are used to efficiently
group and schedule operations and to recover RDD in case
of a system failure. Spark runs up to 100 times faster than
Hadoop MapReduce because it uses in-memory computing
and an optimized task-execution engine [17].

AWS Elastic Map Reduce (EMR) provides fully managed
hosted Hadoop framework on top of Amazon Elastic Compute
Cloud (EC2) [18]. EC2 is a computing environment in the
cloud, where a user can configure the operating system, CPU,
memory, disk, etc. [19]. Based on Iosups study, EC2 has, in
general, better performance compared to similar modern com-
modity systems. The study also showed that EC2 is reasonably
economical for scientific computing, providing slow efficiency
degradation with the increased number of instances [20]. AWS
EMR provides cluster maintenance and big data processing
tools including Spark, Hadoop MapReduce, HBase, Flink, etc.
and allows a user to easily configure and launch a cluster
which are easily resizable [21].

III. SYSTEM OVERVIEW

A. System Workflow

For this project, the data science pipeline was designed
around scalability, availability, and efficiency using distributed
computing on cloud resources. Technologies were selected to
build an ingestion and prediction system for SFFD response
time data. The overall system workflow is noted in Figure 2.

1) Data Sources: SFFD call history is publicly available in
Google Big Query [22]. Google Big Query is a data warehouse
that enables storage, management, and querying of data using
Googles Cloud Services [23]. Section IV-A provides more
details about the SFFD call history data, including the size
and features.

Additionally, the authors also collected estimated travel
time using from Google Maps Distance Matrix API [24].
The Distance Matrix API provides the distance and estimated
arrival time, but does not provide historical data.



Fig. 2: System workflow

TABLE I: EMR Cluster Configurations

Cluster Role EC2 Type Number of CPU Memory
Master m4.large 2 8 GB

Cluster 1 Slave
(Total 2 Nodes) m4.large 2 8 GB

Master m4.xlarge 4 16 GB

Cluster 2 Slave
(Total 2 Nodes) m4.xlarge 4 16 GB

2) Data Storage: Data queried using Google Big Query
and Map APIs was stored in AWS Simple Storage Service
(S3). S3 was selected for its high scalability and durability for
storing the relatively large volume of data.

3) Data Processing and Analysis: For feature engineering
and machine learning, we developed a data pipeline that feeds
data from S3 into EMR. The developed feature engineering
and machine learning algorithms were written in PySpark, the
Spark Python API and processed in parallel on EMR. In this
study, the authors configured two cluster settings specified in
Table I.

B. Data Preprocessing and Feature Engineering

We retrieved the fire station, address, call type, received
timestamp, on scene timestamp, zipcode, and driving distance
and duration for each call. The response time was defined
as the received timestamp subtracted from the on scene
timestamp. The hour of day and day of week that the call
was received were extracted from the received timestamp.

If the station was not listed on the fire department’s website,
then the call was removed from the dataset. Calls were also
removed if the distance between the fire station and address
was not between .01 and two miles, if the response time was
not between one and thirty minutes, or if the response time
was more than twenty times larger than the estimated driving
time. (Algorithm 1).

Before fitting machine learning models, missing values were
imputed with “unknown.” The distance and duration variables
were log transformed and the call type, zipcode, station area,
hour of day and day of week were one hot encoded.

Algorithm 1 Feature Engineering
for Each SFFD calls do

Retrieve station area, address,
call type, received timestamp,
on scene timestamp, zipcode,
response time = on scene - received,
hour of day = hour(received timestamp),
day of week = day(received timestamp),
station address = lookupAddress(station area),
distance, duration = googleMapAPI(station address,

address)
if station area in listed stations and
0.01 miles ≤ distance ≤ 2 miles and
1 minutes ≤ response time ≤ 30 minute and
response time ≤ 20× duration then

Include current call in dataset
end
Impute any empty values with ’unknown’

end

C. Machine Learning Algorithms

Apache Spark’s machine learning (MLlib) library [25] sup-
ports a distributed implement of common ML algorithms.
Distributing the machine learning training process across a
cluster reduces training time and increases the ability to handle
larger datasets. Since the goal of the project is predicting a
numeric outcome (time), we fit a variety of regression algo-
rithms. We choose to fit linear regression (with and without
regularization), decision tree regression, and random forest
regression.

1) Linear Regression: Linear regression estimates a best
fit line for a numeric response based on a linear combination
predictors. Given the distributed framework of Apache Spark,
linear regression is optimized with stochastic gradient descent
(SGD). Linear Regression serves as a baseline model for the
current regression problem.

2) Linear Regression with Elastic Net Regularization:
Adding regularization to linear regression is reasonable choice
given the number of the number predictor variables compared



TABLE II: Number of Calls by Call Type

Call Type Cout
Medical Incident 2,950,934
Structure Fire 605,663
Alarms 486,984
Traffic Collision 186,443
Other 73,508
Citizen Assist / Service Call 68,976
Outside Fire 53,177
Vehicle Fire 22,318
Water Rescue 21,721
Gas Leak (Natural and LP Gases) 16,889
Electrical Hazard 12,716
Odor (Strange / Unknown) 12,287
Elevator / Escalator Rescue 11,918

to the number of observations. Regularization will reduce the
chance the over-fitting and increase the ability of the linear
regression to generalize to unseen data. We choose Elastic
Net Regularization because it linearly combines L1 (lasso)
and L2 (ridge) regularization, thus mitigating the limitations
of separately fitting L1 and L2 regularization. [26].

3) Decision Tree Regression: A decision tree is a su-
pervised machine learning technique greedy algorithm that
performs a recursive binary partitioning of the feature space
into homogeneous regions, in case of regression the homoge-
neous regions are based on the scalar prediction value [27].
Decision trees are a popular technique because they are easy
to interpret, can capture non-linearities, and can model feature
interactions. Apache Spark’s implementation partitions data by
rows, allowing for distributed training [28].

4) Random Forests Regression: A random forest is an
ensemble of decision trees. Each individual tree is trained
on a bootstrapped subset of the data and each binary split
is optimized on a random subsample of possible features.
This inherent randomness between and within the decision
trees avoids over-fitting issues common with decision trees
[29]. Given the estimating of each bootstrapped decision tree
is independent, the algorithm is especially well-suited to a
distributed framework. We fit the regression version of random
forests to estimate the scalar predictor of time. We use Apache
Spark’s default hyperparameter with no tuning.

IV. EXPERIMENT OUTPUT

A. Data

The San Francisco Fire Department (SFFD) stores their
call history publicly available in Google’s Big Query Cloud
service. The earliest recorded calls are from April 2000 and
the database is updated with information up to the present
time. We queried from the database exactly one time, on
January 24, 2019; any subsequent record was not represented
in our dataset. This span of time consisted of 4,557,045 unique
calls. The data included (but not always) the type of call, the
timestamp that the call was received, the timestamp that the

TABLE III: Data sets used for experiment

Data Set Features
small distance, duration

big
distance, duration , call type,
zipcode, station area,
received hour, day of the week

unit was dispatched, the timestamp that the unit arrived on
the scene, the address of the incident, and the battalion to
which the incident was assigned. Table II shows a breakdown
of incident counts by call type.

In addition to the data that we received from the SFFD, we
took advantage of the Google Map’s Distance Matrix API.

Our target variable was the amount of time elapsed between
the time the call was received and the time the firefighters
arrived at the scene of the incident. We chose not to include
any intermediate time information (like when the unit left the
fire station) because the model could learn to use that as a
feature, aka data leakage. Certain fire stations may be slower
at getting on the road which would result in longer overall
response time, and we would like to learn that information–not
only the driving time. We did include additional information
from the Google Maps API, including the estimated driving
time from the firehouse to the scene of the incident, the
estimated distance from the firehouse to the scene of the
incident, and the estimated driving speed. The Google Maps
API returns the estimated travel time if a driver were to leave
the station at the time the API was called. The current results
are based API calls from a single day. One future direction
could be modeling historical traffics patterns and dynamically
adjusting for current traffic. We also included information
about the call itself, including the time of day, the day of
the week, the zip-code, the station area, and the call type.

For benchmarking Spark ML performance with different
data sizes, we used 1) small and 2) big data sets with different
numbers of features Table III)

B. Results

Fig. 3: Effect of Cluster & Data Size on Training Time



Fig. 4: Effect of Cluster & Data Size on RMSE

Fig. 5: Effect of Cluster & Data Size on R2

The Root Mean Squared Error (RMSE) is a common metric
regression and computed as the root of the squared sum of
distances of predicted and true values. For the k-th record,
the error in predicting firefighter response time in minutes is
calculated. Then all errors over n total number of records are
averaged and the square root is taken to calculate RMSE.
RMSE has the nice property of being in the unit of the
observations, so an RMSE of 5 indicates an average error in
predicting response time of 5 minutes. (see Equation 1).

RMSE =

√√√√ 1

n

n∑
k=1

(predictedk − truek)2 (1)

We also used Mean Absolute Error (MAE), a similar metric
to RMSE, which has the property of being in the same units
as the values themselves. The biggest difference is that MAE
is less likely than RMSE to be inflated in the presence of
outliers. Equation 2 shows how to calculate MAE.

MAE =
1

n

n∑
k=1

|predictedk − truek| (2)

Fig. 6: Effect of Cluster & Data Size on MAE

The final metric that we used to evaluate our regression
results is R2. R2 measures how much of the variance in the
independent variable is predicted by the model versus how
much overall variance exists in the independent variable. An
R2 of 1 represents a model that perfectly captures the variation
in the response times. Note that we omitted the R2 metric
for the the Linear Regression with Elastic Net Regularization
because the R2 value gets warped by regularization.

Of the measurements that we took regarding the model
training process on different computers and with different data,
the time spend training the model had the biggest differences.
Unsurprisingly, the extra large machines were able to fit the
models faster than the smaller machines, and training on the
big dataset took longer than training on the small dataset. What
is worth noting is that it is faster across all models to have an
extra large computer with big data than a large computer and
small data.

When looking at RMSE and MAE, it is clear that the results
are slightly better on the larger dataset. However, it does not
appear that the size of computer has a significant effect on
either of these two metrics. The R2 metric displays some
interesting variation among the size of the dataset. However,
the results are nearly identical between different machine sizes.

V. CONCLUSION

The combination of low-cost cloud computing and Spark’s
easy-to-use interface provide a powerful resource for ML
practitioners to create large scale, highly accurate models. For
ML problems such as SFFD with large volumes and high
cardinality (locations), Spark’s scalable throughput enables
ML teams to avoid common big data compromises such as
reducing problem scope, widening predictive accuracy require-
ments, or avoiding the application of complex ML techniques.
In addition, Spark’s built-in ML algorithm library enables a
smooth scaling from smaller to larger scale production; Spark
ML’s data structures, concepts, and parameters are consistent
with other popular Python ML libraries.

Our research has demonstrated that a Spark cluster was a
good choice to run ML algorithms at scale, though this current
result does come with a number of caveats. Practitioners



must carefully weigh the trade-off between improvements in
predictive performance and run-time (cost) for their particular
application. With this particular dataset, we found that not only
did increasing the dataset size have a negligible improvement
on our classification accuracy, but also that using complex tree-
ensemble methods did little to improve results generated from
simpler algorithms. In fact, the simpler Logistic Regression
algorithm had a higher accuracy on the hold-out test set than
either of the more complex algorithms.

With this in mind, one has to be careful in choosing their
methods. Data size nor algorithmic complexity will alone max-
imize prediction accuracy. In particular, if a marginal improve-
ments in predictability are not being sought, then a simpler
method—perhaps one that also has greater interpretability—
may be a more appropriate machine learning algorithm.

Given the data is continuously updated and the ease of
model fitting, creating an automated machine learning that
would fetch new data and fit the models to it would be an
intriguing future direction. That system could be batch (train
models from scratch with new data) or online (already trained
models would be incremented updated with new data). Apache
Spark supports this type of automated workflows with their
Pipelines API and many of ML algorithms have a streaming
implementation.
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