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Abstract— Medication adherence is a critical component and
implicit assumption of the patient life cycle that is often violated,
incurring financial and medical costs to both patients and the
medical system at large. As obstacles to medication adherence
are complex and varied, approaches to overcome them must
themselves be multifaceted.

This paper demonstrates one such approach using sensor
data recorded by an Apple Watch to detect low counts of pill
medication in standard prescription bottles. We use distributed
computing on a cloud-based platform to efficiently process large
volumes of high-frequency data and train a Gradient Boosted
Tree machine learning model. Our final model yielded average
cross-validated accuracy and F1 scores of 80.27% and 80.22%,
respectively.

We conclude this paper with two use cases in which wearable
devices such as the Apple Watch can contribute to efforts to
improve patient medication adherence.

Index Terms— Medication Adherence, Machine Learning,
Distributed Computing, Wearable Sensors

I. INTRODUCTION

In 2003 the World Health Organization estimated that
among developed countries, approximately 50% of patients
with chronic illnesses do not take their medication as pre-
scribed [1]. The issue of medication adherence, while readily
acknowledged in medical circles, continues to persist as rates
of chronic illness increase worldwide [2]. Further compound-
ing the issue, non-compliance with medication schedules
puts a significant strain on healthcare systems. In the United
States alone, hospitalizations due to medication nonadher-
ence are estimated to cost healthcare systems $289 billion
annually [3]. A system that provides accurate estimates of
whether or not a patient has taken their medication has the
potential to drastically improve patient outcomes, saving the
healthcare industry billions of dollars in the process.

An increasing number of technologies have emerged in
recent years to promote strict adherence to prescribed medi-
cation schedules, many of which have been shown to mitigate
nonadherence and improve patient outcomes [4][5]. Some
of the earliest approaches involved mobile applications that
remind users to consume medication at the prescribed time.
More recently, applications have added support for smart
wearable devices. As these devices have grown smaller,
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lighter, and less intrusive to the lives of wearers, increasing
efforts have been made to leverage the newly available
data to promote medication adherence [2][3]. The majority
of efforts have focused on developing reliable means of
verifying the consumption of patient medication. Success
in this area gives reason to consider how we may further
develop complementary technologies to address the issue of
medication adherence from all angles.

With this in mind, we focus our attention on one neglected
approach to resolving the problem of medication nonadher-
ence: ensuring the delivery of refillment medication before
a patient’s supply of medication has been completely con-
sumed. We are motivated in particular by patients dependent
on daily medication, for whom a single missed refillment
poses genuine peril.

In this paper we outline a machine learning-based ap-
proach to detecting low counts of pill medication in standard
prescription bottles using sensor data from an Apple Watch.
Using data from the watch’s gyroscope and accelerometer,
together with audio decibel levels, we develop a classifier
that accurately predicts when there is a low number of pills
remaining at the time a pill is retrieved from a prescription
bottle. Our study includes 16 subjects, each performing 5
trials of retrieving a pill from a prescription bottle at 8
different levels of pill medication in the bottle. We excluded
21 trials due to technical difficulties during the experiment,
leaving us with 619 total trials. This study was carried
out with approval by the Institutional Review Board for
the Protection of Human Subjects at the University of San
Francisco.

II. RELATED WORK

Existing recent research on medication adherence using
wearables focuses primarily on detecting the motions around
pill intake. Chen et al. [6] developed a medication adherence
monitoring system for pill intake from pharmacy bottles
using kinetic cameras and inertial sensors that focused on
detecting “twist-cap” and “hand-to-mouth” actions.

Kalatarian et al. [7] focused on detecting the distinct
actions of “opening a pill bottle” and “pouring pills into
hand” also using both gyroscope and accelerometer data
collected from a smartwatch at 16 Hz. Predictions were
made for both actions, and if “pouring pills into hand”
occurred within six seconds after “opening a pill bottle”,
then a subject was classified as having successfully taken a
pill. Upon comparing their model’s predictions of pill-taking
with similar activities such as raising one’s arm or opening



a water bottle, they found that the gyroscope is particularly
effective in distinguishing the motions of taking a pill from
other similar activities.

Fozoonmayeh et al. [8][9] developed a smartwatch based
medication intake detection system also using gyroscope and
accelerometer sensors that was able to classify pill-taking
among other activities such as writing, walking, and drinking
water with an F1 score of 98%. This explicitly demonstrated
the feasibility of classifying when a subject takes a pill using
a smartwatch; however this work did not detect the number
of pills remaining, as no labels were present.

III. DATA COLLECTION

Experimental data was collected from a total of 16 subjects
using the watchOS application SensorLog [10] on an Apple
Watch. The application recorded 79 distinct variables at a
frequency of 100 Hz, including gyroscope and accelerometer
data. Each experimental trial was conducted as follows. Us-
ing pill substitutes in a standard pharmaceutical prescription
container, subjects picked up and opened the container, ex-
tracted and consumed a single pill, then closed the container.
Each subject, monitored by two experimenters, conducted the
experiment sitting at a table in a room isolated from external
noise, allowing for accurate recording of audio decibel levels.
Each subject performed five trials of the experiment at eight
different levels of pill counts: 0, 1, 5, 10, 15, 20, 25, and 30
pills. In the case of 0 pills, subjects simulated the action
of pill consumption without consuming a pill substitute.
Data were collected for this case to aid in isolating the
feature importance of audio decibel levels from the remaining
primarily motion-based features. Indeed, our final analysis
demonstrates that gyroscopic data, paired with audio decibel
levels, contain adequate signal for detecting low pill counts.

Each trial ranged from 8 to 12 seconds in length, pro-
ducing 800 to 1200 readings for all 79 variables. Data were
streamed to an iPhone and subsequently uploaded to a private
Amazon Web Service (AWS) Simple Storage Service (S3)
bucket [11].

Most important of all, a column of labels was added
to each file indicating the number of pills present in the
prescription container at the time a trial was performed. The
label “1” was used to indicate a low medication state, which
we define as the presence of ten pills or fewer. The label “0”
was used to indicate an amount greater than 10 pills. A pill
count threshold of 10 was chosen as it represents approxi-
mately one-third of the capacity of a standard prescription
container.

IV. DATA PREPROCESSING

The primary goal of preprocessing the collected data was
to produce a single table for training from the 619 recorded
CSV files. Recall that each trial recorded by SensorLog
produced a single CSV file composed of 79 columns and 800
to 1200 rows. As each CSV file in its entirety represented
a single instance of pill consumption, each needed to be
transformed into a single row, i.e. training example, on which
a model could be trained. A single row from any given trial

prior to preprocessing did not in and of itself represent any
identifiable action that a model could learn to identify, as it
represents sensor readings at a single point in time.

We processed each file into a single row, as follows:
1) Partition the rows of each trial into 5 contiguous

sections, each section further referred to as a time
window. Each time window is almost exactly one-fifth
the length of the original file.

2) Compute the summary statistics mean, standard devi-
ation, minimum, and maximum, per feature, per time
window. Each time window-feature combination maps
to one new feature in the final table. For example, the
minimum of gyroscopic data along the x-axis in time
window 3 would produce a new feature: min gyro x 3.

3) Concatenate the resulting summary statistics into a
new separate, single row that effectively summarizes
the statistical properties of the entire trial – and is
amenable to machine learning.

Our exploratory analysis led us to select 5 out of the 79
raw features collected – gyrox, gyroy , gyroz , audio peak
power, audio average power – in order to balance processing
speed and predictive power, and the 4 summary statistics
mentioned above – mean, standard deviation, minimum, and
maximum – for a total of 5 features · 4 statistics · 5 windows
+ 2 metadata = 102 engineered features, resulting in a final
table with 619 rows and 102 columns (Figure 1).

V. DISTRIBUTED MACHINE LEARNING

Due to the potential need to scale massive amounts of
incoming data, processing and modeling capabilities were
built using an Apache Spark distributed computing platform
[12] hosted on Amazon’s Elastic Map Reduce (EMR) service
[13]. Apache Spark allows all preprocessing functions to
transform raw watch data into a format suitable for training a
model in a matter of seconds. Additionally, it grants access to
Spark’s built-in machine learning platform, MLlib, providing
access to state-of-the-art algorithms along with workflow
utilities and model evaluation tools.

Each model trained using MLlib predicts the probability
that a new, unseen trial corresponds to a low pill count.
Binary predictions were derived from those probabilities by
classifying any probability greater than or equal to 0.50
as low (10 or fewer), while any probability lower than
0.50 was classified as high (greater than 10, up to 30).
To objectively evaluate the model quality, we considered
classification accuracy and F1 score. Accuracy is defined
as the proportion of correct predictions made out of total
predictions. F1 score is defined as the harmonic mean of
each model’s precision and recall, which serves as a better
measure of performance on unbalanced classes – which is
marginally true in our case. F1 score is typically considered
a better evaluation metric than accuracy as it strikes a balance
between both false positive and false negative rate.



Fig. 1: Feature engineering process. Each of the 619 trials produced a data frame with columns consisting of 79 raw features
recorded by SensorLog, and rows corresponding to values sampled at 100 Hz. The data frame was then divided into windows;
for each window, four summary statistics were computed for each selected raw feature — gyrox, gyroy , gyroz , audio peak
power, audio power — resulting in a row vector of 102 engineered features. The 619 vectors were concatenated to form
the training dataset for machine learning. Note that the data are unnormalized.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2 ∗ (Recall ∗ Precision)

(Recall + Precision)
(3)

A standard machine learning technique we employed to
evaluate a model’s ability to generalize to unseen data
is k-fold cross validation, which splits the dataset into k
equal-length folds, and trains k models on all but one fold
each time. Evaluation metrics are computed k times for
each model’s performance on each of the holdout folds,
and then averaged for a better approximation of the true
performance on unseen data. We performed 5-fold cross
validation resulting in folds of approximately 124 rows.

VI. RESULTS

Our baseline logistic regression model [14] results in a
classification accuracy of 69.92% and an F1 score of 69.20%.
The Gradient-Boosted Tree model [15], comprised of 200
estimators using a tree-depth of 3 and learning rate of 0.30,
reaches an improved accuracy of 80.27% and F1 score of
80.22%.

As shown in Figure 2, the models trained on data separated
into five windows markedly outperform those trained on
data separated into ten windows. The stages of motion each
subject underwent while simulating medication intake fall
into different windows from subject to subject due to natural
variance in speed. Using fewer windows, subjects were more
likely to be opening, consuming, or closing the prescription
container within a single window – information which a tree-
based model can better learn from and fit across all subjects.

VII. CONCLUSION

Contrary to prior belief, our results suggest that it is in fact
possible to detect when a patient’s pill-based medication is
running low using only a smartwatch. With cross-validated
accuracy and F1 scores of 80.27% and 80.22%, respectively,
the Gradient-Boosted Tree model outperforms expectations.

It is important to note that this data was collected in a
controlled setting, with minimal background noise. Subjects
performed instructed movements, and in reality, patients take
medication with far more variation in speed, movement, and
background noise. A first solution to this problem would be
to collect more data from a wide variety of subjects and
environments, without any instructions on how to take their
medication.

A separate avenue for improvement is to include more
raw features, such as accelerometer sensor readings, in our



Fig. 2: Model evaluation. The Gradient-Boosted Tree model
performs best when there are five windows, with an accuracy
of 79.5%. Increasing the number of windows to 10 decreases
median accuracy and F1 scores by approximately 11%.

preprocessing pipeline. SensorLog records 79 raw features,
while our model makes use of five. This reduction of inputs
was required due to the limited number of subject trial
records and the nature of machine learning models – which
suffer performance breakdowns when the number of columns
within the training data set is larger than the number of
rows. A consequence of transforming each record from long
to wide was the creation of many more processed features,
which forced us to limit the number of raw inputs. A sliding
window approach, as opposed to the fixed windows we
employ in this paper, may be capable of supporting larger
quantities of features.

A third avenue for improvement is to spend more com-
putational resources to fine-tune model hyperparameters.
Currently, the Gradient-Boosted Tree model combined 200
estimators using a tree-depth of 3 and learning rate of 0.30.
Grid search can be employed over a wider search space
to further optimize the model. Moreover, it is possible that
an entirely different model architecture, such as a recurrent
neural network, could produce even better results; however,
this would require an entirely separate preprocessing pipeline
and training procedure.

Despite these considerations, our current machine learning
model demonstrates the ability to predict a low medication
state in a controlled environment with a high degree of
accuracy, predicting correct state in four out of five cases.
The external use cases of such work are numerous. One
interesting use case could be to flag and alert medical
systems of possible overdose events.

Another case could be an application for a smartwatch
(such as the Apple Watch) that launches when triggered by
a pre-programmed Near-Field-Communication (NFC) sensor

attached to a prescription container. The application would
then run two models simultaneously, a model to classify
the subsequent actions as positive pill consumption, and a
model to classify low medication state in the container –
conditioned on prior positive pill consumption. When low
medication state is detected, a medical system, doctor, or
pharmacy would be notified. This would benefit proper track-
ing of medical adherence, while also allowing an automatic
reordering system to be built into the application.

In summary, sensor data recorded by an Apple Watch were
used to detect low counts of pill medication in standard
prescription bottles with a machine learning model. Con-
verting recorded data into a format amenable to machine
learning involved splitting the data into a number of time
windows, computing summary statistics within each window,
and merging engineered features into a training dataset. Our
results demonstrate the promise of wearable devices for
developing new strategies to combat medical nonadherence.
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