Sensor Selection for Activity Classification
at Smart Home Environments

Nithish Bolleddula®, Geoffrey Yau Chun Hungl, Daren Mal,
Hoda Noorian' and Diane Myung-kyung Woodbridge?

Abstract— As the world’s older population grows dramat-
ically, the needs of continuing care retirement communities
increases. Studies show that privacy can be a major concern for
adopting technologies, while the older population prefers smart
homes [1]. In order to minimize the number of sensors to be
installed in each house, we performed Principal Component
Analysis (PCA) to filter out the relatively unimportant sensors.
We applied a machine learning model to classify residents’
activity types, using a different set of sensors chosen by PCA.
Then, we validated the trade-off between the classification
model accuracy and the number of sensors used in classification.
Our experiment shows that feature engineering helps reduce
accuracy degradation for activity type classification when using
fewer sensors in smart homes.

Index Terms— Smart homes, Privacy, Machine learning,
Distributed computing

I. INTRODUCTION

With the ongoing growth of the older population, smart
home technologies became an emerging area [2]. Installing
sensors in residences to monitor the behaviors of resi-
dents without limiting or disturbing their daily routine is
considered as a functional environment to assist the well-
being of residents unobtrusively and ubiquitously [3]. With
a various number of sensors installed per home, rich real-
life data are collected and analyzed to provide a detailed
view of residents’ daily behavior. Even though the sensor
providers may encrypt all the data that are collected by
the sensors, people still may feel reluctant to participate if
sensors are placed in private places like bathrooms or too
many sensors are being installed [4]. Therefore, minimizing
the number of sensors while retaining maximum information
gain is a critical problem for assisting residents promptly and
minimizing privacy concerns.

In this research, we used the Human Activity Recognition
from Continuous Ambient Sensor Data Set, collected and
cleaned by Diane J. Cook et al. from Washington State
University [5]. Each house has a floor plan similar to
Figure The dataset consists of sensor data from 29
houses where volunteer residents stay. Based on different
sensor types, each sensor will be triggered and send signals
to the server. The dataset includes a timestamp, sensor id,
room type and location, sensors type such as motion, light,

INithish Bolleddula, Geoffrey Hung Daren Ma and Hoda Noorian are
with the MS in Data Science Program, University of San Francisco. These
authors contributed equally. {nbo lleddula, yhung9, dmal4,
hnoorian}@dons.usfca.edu

?Diane Myung-kyung Woodbridge, Ph.D. is an assistant professor
at the MS in Data Science Program, University of San Francisco.
dwoodbridge@usfca.edu

w022
022

w0]
i3t wgs isme

[Mo1 05

T 1005, 1A020
SO s

oy
Maoza
s

Sy e P
L5007

et

fom IJLSDN

o) vaggplyonz | o |)
o| | s008 LSﬂﬂi‘\wu, mo3 ~ - Tiga
o3 7

TS
uz)

001
S001
o [TI02.
00z

(a) Floor plan example [5]

w25 Do0s.

Co-occurence Heatmap

Ti06 sum of co-occurence
3500

Ti03
MAD22
MAO17

Mo27

Mo24
M020

Mo12

Moo

M006

Moo3 2500
Ls027
L5024
Ls021
Ls018
Ls015 i 2000
Ls012
L5009
LS006 1
LS003

LOO6

3000

sensor2

1500

Lo03
D006
D003

BATP106 1000

BATP102

BATP026

BATP023

BATPD20

BATPO17 500

BATPD14

BATPO11

BATPOOS

BATPDOS

BATP002

(b) Co-occurrence plot demonstrating how sensors signal together
within the same time window. Both axes are ordered by sensors and
the values are the co-occurrence counts of two sensors within the
time window.

Fig. 1: Residence floor plan and sensor co-occurrence

door, temperature, etc. and activity class. The data schema
follows the format below where the last field, ‘activity’, is
a prediction label (Table [). We explored the co-occurence
of the signals from different sensors within the same 5-min
time window (Figure [Ib). We could observe that there are
certain sensors signals often occur together, which suggests
us to reduce the number of sensors without losing too much
information.

Each house has different data collection periods, which

TABLE I: Schema of collected data

timestamp sensor_id ; oom.-level detail | message sensor activity
ocation type
o006ap 8341 | MO21 Bedroom | Bed | On Motion | Sleep

range from months to almost two years, and hence the data
volume. The data size ranges from 100MB to 1GB, which
requires efficient data preprocessing and machine learning
algorithms. Given the nature of high frequency data from
smart homes, the large data size makes it harder to develop
and fine-tune machine learning algorithms on a single local
machine. Distributed computing and cloud computing are
used to process the data and develop machine learning mod-
els for large datasets. We applied distributed computing to
process the data, Principal Component Analysis for selecting
an optimal set of sensors and trained a machine learning
model using Apache Spark [6] on Amazon Web Service
(AWS) [7].

II. RELATED WORK

The researchers who published the data set have mostly
focused on the activity type classification itself so far,
although they also discussed user privacy and technology
usability concerns including sensor costs and acceptability
by the general public. The research team relied on smart
home sensors to monitor the behavioral states of the residents
[8]. In another research, the researchers implemented a
time series analysis for the study of inpatient rehabilitation
[9]. The researchers drew the conclusion that the greatest
amount of movement changes occur at the end of inpatient
rehabilitation.

Human Activity Recognition (HAR) can provide useful
solutions to many problems in elder-care and healthcare [10].
Extensive research [11] has focused on activity recognition
using various sensor data for different scenarios. The steps
can be broken down into preprocessing, feature extraction,
and machine learning at a high level. Different studies have
varying focuses, including learning models, near-real-time
inference, and change-time point prediction [12].

III. WORK FLOW
A. Infrastructure

Amazon Web Services (AWS) is a platform that provides
cost-effective storage and computing frameworks [7]. Since
we are working with high-frequency data from sensors with
high volume, the benefits of a scalable cloud service which
is accessible become more critical [13]. We used this service
for storing and processing the data.

For storing the raw sensor data, we utilized AWS Simple
Storage Service (S3). S3 offers secure data transfer through
access policy options that allows only authorized users to
access the data. S3 also allows storing any type and size of
an object with an option to replicate in case of data loss [14].

For applying preprocessing and machine learning algo-
rithms, we utilized Apache Spark that distributes data across

the network and processes it in parallel. We used AWS Elas-
tic MapReduce (EMR) service as the distributed computing
environment [15].

B. Data Pipeline

1) Distributed Data Preprocessing: The sensor log cap-
tures a resident’s activities - any activities by residents may
trigger multiple sensors and hence log data.

sorted sensor_id activity Event
timestamp
20:06 A dinner 1
20:07 B dinner 1
20:08 A dinner 1
21:06 A TV 2
22:06 (0] reading &
23:06 c reading 3
L+
Event activity A B C
1 dinner 2 1 0
2 vV 1 0 0
3 reading 0 0 2

Fig. 2: Pre-processing logic

Our first step is to group the log data that share the same
activity along with the time interval as an event, and sort by
timestamp. Figure [2 shows an example of preprocessed data.
We have generated a number of features based on the work of
Aminikhanghahi et al. [16]. We have only kept the features
that are unique per window, in order to keep the data easy to
handle after preprocessing. Since we have not implemented
the transition point and change detection, we don’t expect our
classification performance to be comparable to their work,
as the goal of our research is comparing the performance
of models with all versus fewer sensors. For each window,
we have extracted: minimum time of timestamp, maximum
time of timestamp, duration of that activity in the given
window, number of sensor events in the window, dominant
location of the window, dominant location of the previous
window, dominant sensor of the window, dominant sensor
of the previous window and weekday as a number.

2) Principal Component Analysis: To minimize the num-
ber of sensors while retaining majority of information, we
applied a dimension reduction technique, Principal Compo-
nent Analysis (PCA) [17]. Resulting Principal Components
(PCs) and its variance can help identify important sensors.
We handle it by taking the absolute of PCs, multiply by the
ratio of the variance, and then sum them up.

For each house, the data matrix D,,«,, has n records
and m sensors. With the application of Singular Value
Decomposition (SVD), we are able to factorize the data
matrix and perform Principal Component Analysis on top
of that.

DnXm = Unxn * SnXm : PCme

where PCyxpm = (PCY, PCP) .. PC(™) is Right
Singular Matrix of S having principal components from 1
to m, Sy, xm = Rectangular matrix with singular values of D
on diagonal, and U, «,, = Left Singular Matrix of .S.

We denote w(® as the variance explained by the i-th
Principal Component, then we have a new vector w:

w = (w, w?, .. wm)

We define a novel Sensor Importance vector Iy, as
follows:

We consider first K principal components whose cumu-
lative variance explained exceeds a constant value /3. (3 is
a hyper parameter which controls the number of principal
components selected (/).

Once we select K principal components, we calculate
Sensor importance vector as:

ZKzl w® |pc(i)‘

S WO

it" element of Sensor Importance Vector Iy, represents
importance of sensor;. The intuition behind constructing the
Sensor Importance Vector is to identify the sensors which
contribute to the top-K principal components the most. This
step yields a vector of size m where each entity approximates
the importance of a specific sensor toward the PC's set. The
vector is then sorted by their magnitude for sensor selection.

We select 25%, 50%, and 75% of the sensors based on
the importances from Sensor Importance Vector I x,,, then
rerun to the preprocessing pipeline to generate a new dataset
only using selected sensors. This processed data is further
used for building machine learning model. Cross-validating
values of 3 against the accuracy of this model, 5 = 0.8 was
chosen.

3) Distributed Machine Learning: We developed and fine-
tuned machine learning algorithms of Random Forest [18],
Naive Baye [19], Logistic Regression [20], a multi-layer
feedforward Neural Networks [21] and XGBoost [22] to
compare and choose the best model. The experiment output
shows that tree-models including XGboost and Random
Forest tend to have higher performance (Figure [3).

Random forest is an ensemble-based supervised learning
algorithm that aggregates multiple decision trees [18]. The
algorithm uses random sampling of training data when
building trees and a random subset of features when split-
ting the nodes. This inherent randomness within the trees
avoids overfitting issues complicit with deterministic deci-
sion trees, which allows the random forest to perform well
without much of hyperparameter tuning. Additionally, the
Random Forest algorithm is highly parallelizable, which is
an excellent advantage in a distributed computing setting.
Considering these advantages of Random Forest, we choose
it for further purposes.

Il><m

IV. EXPERIMENT OUTPUT

We deployed the developed preprocessing pipeline to
several AWS EMR clusters with different configurations. The

TABLE II: Runtime comparison on different cluster config-
urations

Total Memory (GB) # of data | Runtime
. . vCPU oo
instances per instance partitions (secs)
i-5 processor 8 2 4 320
1 16 4 8 134
3 16 4 12 52
evening 5 16 4 20 44
3 32 8 24 42
5 32 8 40 34

60% 56.28% 55.64%

53.33%

52.16%

50.05%

46.14%

40%

20%

0%

Random Forest XGBoost NN Logistic Regression Naive Bayes Baseline

Fig. 3: Accuracy of different classification algorithms using
25% of sensor returned from PCA for house csh102 (without
preprocessing). The baseline algorithm returns the most
frequent class.

experiment results in Table [[Ij shows that an Apache Spark
cluster with more worker nodes, memory, CPU, and data
partitions yields the shortest execution time.

0.9 —e— all sensors
—#— 75% of sensors

50% of sensors

0.8 —— 25% of sensors

0.7

0.6

Model Accuracy

0.5

House Code

(a) Accuracy of activity classification with additional features

1 —o— all sensors
—#—75% of sensors
50% of sensors
0.9 —— 25% of sensors

Model Accuracy

| sl

nnnnnnnnnnnnnnnnnnnnnnnnnnnnn

HHHHHHHHHHHHHHHHHHHHHHHHHHHHH

House Code

(b) Accuracy of activity classification with PCA with no additional
features

Fig. 4: Accuracy of activity classification

After preprocessing and applying machine learning al-
gorithms, the experiment results (Table and Figure H)
show that the extracted features help minimize accuracy
degradation. we observed a drop of around 3-4% in accuracy
when using 50% of sensors instead of the full sensor set. In
addition, eliminating 75% of sensors using the developed
preprocessing with extracted features only causes less than
10% accuracy degradation.

The results also showed that the extracted features improve
accuracy by around 7% consistently using the same set of
data (Table[[IT). Depending on the trade-off between accuracy
and privacy/cost, fewer sensors option may be favorable in
many use cases.

TABLE III: Average accuracy after data preprocessing and
feature selection

Average accuracy
with extracted features

Average accuracy

% of sensors without extracted features

25% 66.7% 59.4%
50% 72.4% 65.1%
75% 75.6% 67.4%
100% 76.1% 68.6%

V. CONCLUSION

In this paper, we demonstrated PCA as a sensor selection
tool to identify important sensors from sensor log data
without manual involvement. The same method can be scaled
to different scenarios and data sizes. It is a trivial relationship
that fewer sensors result in accuracy degradation, but the
empirical experiment suggests even with 25% of original
sensors, it only causes less than a 10% drop. With feature
engineering, we can improve the accuracy by 7%. This
suggests fewer sensors approach is possible to give reason-
able accuracy. For future work, we plan to use advanced
sensor data segmentation, transition detection and time series
analysis to add more temporal features to the current model
while minimizing the number of sensors installed.

At last, we demonstrated how distributed computing can
significantly reduce the computation time needed. Our whole
pipelines including preprocessing, feature extraction, PCA
and machine learning prediction are all developed in Apache
Spark which can be scaled easily with AWS EMR. Even
the incoming data is streaming sensor data, we can extend
the current pipeline to cater for the needs using Spark
Streaming.

REFERENCES

[1] K. L. Courtney, G. Demeris, M. Rantz, and M. Skubic, “Needing smart
home technologies: the perspectives of older adults in continuing care
retirement communities.” 2008.

[2] G. Demiris, B. K. Hensel, M. Skubic, and M. Rantz, “Senior residents’
perceived need of and preferences for “smart home” sensor technolo-
gies,” International journal of technology assessment in health care,
vol. 24, no. 1, pp. 120-124, 2008.

[3] M. Chan, D. Esteve, C. Escriba, and E. Campo, “A review of smart
homes—present state and future challenges,” Computer methods and
programs in biomedicine, vol. 91, no. 1, pp. 55-81, 2008.

[4] M. Pol, F. van Nes, M. van Hartingsveldt, B. Buurman, S. de Rooij,
and B. Krose, “P315: Older people’s perspectives regarding the use
of sensor monitoring in their home,” European Geriatric Medicine,
no. 5, pp. S180-S181, 2014.

[5]
[6

i}

[7]
[8]

[9

—

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

D. J. Cook, “Learning setting-generalized activity models for smart
spaces,” IEEE intelligent systems, vol. 2010, no. 99, p. 1, 2010.
Apache Spark, “Apache spark: Lightning-fast cluster computing,”
2020. [Online]. Available: http://spark.apache.org

Amazon Web Service. (2020) Amazon. [Online]. Available: https:
/laws.amazon.com

D. J. Cook, M. Schmitter-Edgecombe, L. Jonsson, and A. V. Morant,
“Technology-enabled assessment of functional health,” IEEE reviews
in biomedical engineering, vol. 12, pp. 319-332, 2018.

G. Sprint, D. Cook, D. Weeks, J. Dahmen, and A. La Fleur, “Analyzing
sensor-based time series data to track changes in physical activity
during inpatient rehabilitation,” Sensors, vol. 17, no. 10, p. 2219, 2017.
E. Kim, S. Helal, and D. Cook, “Human activity recognition and
pattern discovery,” IEEE pervasive computing, vol. 9, no. 1, pp. 48-53,
2009.

E. De-La-Hoz-Franco, P. Ariza-Colpas, J. M. Quero, and M. Espinilla,
“Sensor-based datasets for human activity recognition—a systematic
review of literature,” IEEE Access, vol. 6, pp. 59 192-59 210, 2018.
C. A. Ronao and S.-B. Cho, “Recognizing human activities from
smartphone sensors using hierarchical continuous hidden markov mod-
els,” International Journal of Distributed Sensor Networks, vol. 13,
no. 1, p. 1550147716683687, 2017.

D. Fozoonmayeh, H. V. Le, E. Wittfoth, C. Geng, N. Ha, J. Wang,
M. Vasilenko, Y. Ahn, and D. M.-k. Woodbridge, “A scalable
smartwatch-based medication intake detection system using distributed
machine learning,” Journal of Medical Systems, vol. 44, no. 4, pp. 1-
14, 2020.

Amazon Web Services. (2020) Amazon s3. [Online]. Available:
https://aws.amazon.com/s3/

Amazon Web Services m. (2020) Amazon emr. [Online]. Available:
https://aws.amazon.com/emr/.

S. Aminikhanghahi and D. J. Cook, “Enhancing activity recognition
using cpd-based activity segmentation,” Pervasive and Mobile Com-
puting, vol. 53, pp. 75-89, 2019.

S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp.
37-52, 1987.

S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
methodology,” IEEE transactions on systems, man, and cybernetics,
vol. 21, no. 3, pp. 660-674, 1991.

I. Rish et al., “An empirical study of the naive bayes classifier,” in
1JCAI 2001 workshop on empirical methods in artificial intelligence,
vol. 3, no. 22, 2001, pp. 41-46.

J. S. Cramer, “The origins and development of the logit model,” Logit
models from economics and other fields, vol. 2003, pp. 1-19, 2003.
J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85-117, 2015.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785-794.

http://spark.apache.org
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com/s3/
https://aws.amazon.com/emr/

